diff options
Diffstat (limited to '3507')
-rw-r--r-- | 3507/CH1/EX1.8/Ex1_8.sce | 69 | ||||
-rw-r--r-- | 3507/CH12/EX12.8/Ex12_8.sce | 39 | ||||
-rw-r--r-- | 3507/CH13/EX13.17/Ex13_17.sce | 45 | ||||
-rw-r--r-- | 3507/CH13/EX13.8/Ex13_8.sce | 47 | ||||
-rw-r--r-- | 3507/CH16/EX16.19/Ex16_19.sce | 44 |
5 files changed, 123 insertions, 121 deletions
diff --git a/3507/CH1/EX1.8/Ex1_8.sce b/3507/CH1/EX1.8/Ex1_8.sce index bc0893ce1..4198f2ee1 100644 --- a/3507/CH1/EX1.8/Ex1_8.sce +++ b/3507/CH1/EX1.8/Ex1_8.sce @@ -1,35 +1,34 @@ -//chapter1
-//example1.8
-//page21
-
-R=8 // ohm
-R1=10 // ohm
-R2=20 // ohm
-R3=12 // ohm
-//removing 100 ohm resistance, we form linear equations by assuming currents I1 through loop1 and I2 through loop2
-
-//100=10*I1+20*(I1-I2)
-//0=(12+8)*I2+20*(I2-I1)
-
-//thus we get the following linear equations
-
-//30*I1-20*I2=100
-//-20*I1+40*I2=0
-//solving these equations
-
-a=[30 -20;-20 40]
-b=[100;0]
-x=inv(a)*b // matrix of I1 and I2
-
-I2=x(2,1) // current through 8 ohm resistor
-
-E0=I2*R
-printf("voltage across AB with 100 ohm resistance not connected = %.3f V \n",E0)
-
-R_equi=(R1*R2/(R1+R2))+R3
-R0=R_equi*R/(R_equi+R)
-printf("resistance between AB with 100 ohm removed and voltage source shorted = %.3f ohm \n",R0)
-
-I=E0/(R0+Rl)
-printf("current through 100 ohm resistor = %.3f A",I)
-
+//chapter1 +//example1.8 +//page21 + +R=8 // ohm +R1=10 // ohm +R2=20 // ohm +R3=12 // ohm +//removing 100 ohm resistance, we form linear equations by assuming currents I1 through loop1 and I2 through loop2 + +//100=10*I1+20*(I1-I2) +//0=(12+8)*I2+20*(I2-I1) + +//thus we get the following linear equations + +//30*I1-20*I2=100 +//-20*I1+40*I2=0 +//solving these equations + +a=[30 -20;-20 40] +b=[100;0] +x=inv(a)*b // matrix of I1 and I2 + +I2=x(2,1) // current through 8 ohm resistor + +E0=I2*R +printf("voltage across AB with 100 ohm resistance not connected = %.3f V \n",E0) + +R_equi=(R1*R2/(R1+R2))+R3 +R0=R_equi*R/(R_equi+R) +printf("resistance between AB with 100 ohm removed and voltage source shorted = %.3f ohm \n",R0) + +I=E0/(R0+R1) +printf("current through 100 ohm resistor = %.3f A",I)
\ No newline at end of file diff --git a/3507/CH12/EX12.8/Ex12_8.sce b/3507/CH12/EX12.8/Ex12_8.sce index bd17c8763..e92749303 100644 --- a/3507/CH12/EX12.8/Ex12_8.sce +++ b/3507/CH12/EX12.8/Ex12_8.sce @@ -1,19 +1,20 @@ -//chapter12
-//example12.8
-//page245
-
-V_CC=20 // V
-R_B=100 // kilo ohm
-R_C=1 // kilo ohm
-V_BE=0.7 // V
-
-// we know that R_B=(V_CC-V_BE-gain_beta*R_C*I_B)/I_B so we get
-I_B=(V_CC-V_BE)/(R_B+gain_beta*R_C)
-
-I_C=gain_beta*I_B
-
-V_CE=V_CC-I_C*R_C
-
-printf("operating point is %.3f V, %.3f mA \n",V_CE,I_C)
-
-// the accurate answer is 10.35V,9.65mA but in book it is given as 10.4V,9.6mA
+//chapter12 +//example12.8 +//page245 + +V_CC=20 // V +R_B=100 // kilo ohm +R_C=1 // kilo ohm +V_BE=0.7 // V +gain_beta=100 + +// we know that R_B=(V_CC-V_BE-gain_beta*R_C*I_B)/I_B so we get +I_B=(V_CC-V_BE)/(R_B+gain_beta*R_C) + +I_C=gain_beta*I_B + +V_CE=V_CC-I_C*R_C + +printf("operating point is %.3f V, %.3f mA \n",V_CE,I_C) + +// the accurate answer is 10.35V,9.65mA but in book it is given as 10.4V,9.6mA
\ No newline at end of file diff --git a/3507/CH13/EX13.17/Ex13_17.sce b/3507/CH13/EX13.17/Ex13_17.sce index b4625c492..cf8e2be75 100644 --- a/3507/CH13/EX13.17/Ex13_17.sce +++ b/3507/CH13/EX13.17/Ex13_17.sce @@ -1,22 +1,23 @@ -//chapter13
-//example13.17
-//page291
-
-Es=10d-3 // V
-Rs=3d3 // ohm
-Rin=7d3 // ohm
-Rout=15 // ohm
-Rl=35 // ohm
-
-I1=Es/(Rs+Rin)
-V1=I1*Rin
-Av=Ao*Rl/(Rout+Rl)
-// since V2/V1=Av, we get
-V2=V1*Av
-
-P2=V2^2/Rl
-P1=V1^2/Rin
-Ap=P2/P1
-
-printf("magnitude of output voltage = %.2f V \n",V2)
-printf("power gain = %.2f \n",Ap)
+//chapter13 +//example13.17 +//page291 + +Ao=1000 +Es=10d-3 // V +Rs=3d3 // ohm +Rin=7d3 // ohm +Rout=15 // ohm +Rl=35 // ohm + +I1=Es/(Rs+Rin) +V1=I1*Rin +Av=Ao*Rl/(Rout+Rl) +// since V2/V1=Av, we get +V2=V1*Av + +P2=V2^2/Rl +P1=V1^2/Rin +Ap=P2/P1 + +printf("magnitude of output voltage = %.2f V \n",V2) +printf("power gain = %.2f \n",Ap)
\ No newline at end of file diff --git a/3507/CH13/EX13.8/Ex13_8.sce b/3507/CH13/EX13.8/Ex13_8.sce index ab7ab3d76..65bbfed6f 100644 --- a/3507/CH13/EX13.8/Ex13_8.sce +++ b/3507/CH13/EX13.8/Ex13_8.sce @@ -1,23 +1,24 @@ -//chapter13
-//example13.8
-//page282
-
-del_Ib=10d-3 // mA
-del_Ic=1 // mA
-del_Vbe=0.02 // V
-Rc=5 // kilo ohm
-Rl=10 // kilo ohm
-
-Ai=del_Ic/del_Ib
-Rin=del_Vbe/del_Ib
-R_AC=Rc*Rl/(Rc+Rl)
-Av=gain_beta*R_AC/Rin
-Ap=Av*Ai
-
-printf("current gain = %.3f \n",Ai)
-printf("input impedence = %.3f kilo ohm \n",Rin)
-printf("ac load = %.3f kilo ohm \n",R_AC)
-printf("voltage gain = %.3f \n",Av)
-printf("power gain = %.3f \n",Ap)
-
-// the accurate answer for voltage gain = 166.667 and for power gain = 16666.667 but in book they are given as 165 and 16500 respectively.
+//chapter13 +//example13.8 +//page282 + +del_Ib=10d-3 // mA +del_Ic=1 // mA +del_Vbe=0.02 // V +Rc=5 // kilo ohm +Rl=10 // kilo ohm +gain_beta=60.0; + +Ai=del_Ic/del_Ib +Rin=del_Vbe/del_Ib +R_AC=Rc*Rl/(Rc+Rl) +Av=gain_beta*R_AC/Rin +Ap=Av*Ai + +printf("current gain = %.3f \n",Ai) +printf("input impedence = %.3f kilo ohm \n",Rin) +printf("ac load = %.3f kilo ohm \n",R_AC) +printf("voltage gain = %.3f \n",Av) +printf("power gain = %.3f \n",Ap) + +// the accurate answer for voltage gain = 166.667 and for power gain = 16666.667 but in book they are given as 165 and 16500 respectively.
\ No newline at end of file diff --git a/3507/CH16/EX16.19/Ex16_19.sce b/3507/CH16/EX16.19/Ex16_19.sce index 26694f69c..61e92009e 100644 --- a/3507/CH16/EX16.19/Ex16_19.sce +++ b/3507/CH16/EX16.19/Ex16_19.sce @@ -1,22 +1,22 @@ -//chapter16
-//example16.19
-//page359
-
-Vcc=10 // V
-R1= 10 // kilo ohm
-R2=10 // kilo ohm
-Vbe=0.7 // V
-Re=4.3 // kilo ohm
-gain_beta=200
-
-V2=Vcc*R2/(R1+R2)
-Ve=V2-Vbe
-Ie=Ve/Re
-re_dash=25/Ie
-Re_dash=Re*Rl/(Re+Rl)
-Zin_base=gain_beta*(re_dash+Re_dash)
-Zin=Zin_base*(R1*R2/(R1+R2))/(Zin_base+R1*R2/(R1+R2))
-
-printf("input impedence = %.3f kilo ohm \n",Zin)
-
-// the accurate answer is 4.996 kilo ohm but in book it is given as 4.96 kilo ohm
+//chapter16 +//example16.19 +//page359 + +Vcc=10 // V +R1= 10 // kilo ohm +R2=10 // kilo ohm +Vbe=0.7 // V +Re=4.3 // kilo ohm +gain_beta=200 + +V2=Vcc*R2/(R1+R2) +Ve=V2-Vbe +Ie=Ve/Re +re_dash=25/Ie +Re_dash=Re*R1/(Re+R1) +Zin_base=gain_beta*(re_dash+Re_dash) +Zin=Zin_base*(R1*R2/(R1+R2))/(Zin_base+R1*R2/(R1+R2)) + +printf("input impedence = %.3f kilo ohm \n",Zin) + +// the accurate answer is 4.996 kilo ohm but in book it is given as 4.96 kilo ohm
\ No newline at end of file |