diff options
Diffstat (limited to '3504')
-rw-r--r-- | 3504/CH1/EX1.1/Ex1_1.sce | 7 | ||||
-rw-r--r-- | 3504/CH1/EX1.2/Ex1_2.sce | 9 | ||||
-rw-r--r-- | 3504/CH2/EX2.13/Ex2_13.sce | 6 | ||||
-rw-r--r-- | 3504/CH2/EX2.14/Ex2_14.sce | 8 | ||||
-rw-r--r-- | 3504/CH2/EX2.15/Ex2_15.sce | 13 | ||||
-rw-r--r-- | 3504/CH2/EX2.16/Ex2_16.sce | 5 | ||||
-rw-r--r-- | 3504/CH2/EX2.19/Ex2_19.sce | 9 | ||||
-rw-r--r-- | 3504/CH2/EX2.2/Ex2_2.sce | 44 | ||||
-rw-r--r-- | 3504/CH2/EX2.20/Ex2_20.sce | 4 | ||||
-rw-r--r-- | 3504/CH2/EX2.21/Ex2_21.sce | 8 | ||||
-rw-r--r-- | 3504/CH2/EX2.26/Ex2_26.sce | 14 | ||||
-rw-r--r-- | 3504/CH2/EX2.3/Ex2_3.sce | 16 | ||||
-rw-r--r-- | 3504/CH2/EX2.4/Ex2_4.sce | 10 | ||||
-rw-r--r-- | 3504/CH2/EX2.5/Ex2_5.sce | 25 | ||||
-rw-r--r-- | 3504/CH2/EX2.6/Ex2_6.sce | 12 | ||||
-rw-r--r-- | 3504/CH2/EX2.7/Ex2_7.sce | 8 | ||||
-rw-r--r-- | 3504/CH2/EX2.8/Ex2_8.sce | 12 | ||||
-rw-r--r-- | 3504/CH2/EX2.9/Ex2_9.sce | 12 |
18 files changed, 222 insertions, 0 deletions
diff --git a/3504/CH1/EX1.1/Ex1_1.sce b/3504/CH1/EX1.1/Ex1_1.sce new file mode 100644 index 000000000..bea5bb421 --- /dev/null +++ b/3504/CH1/EX1.1/Ex1_1.sce @@ -0,0 +1,7 @@ +//To determine the resistance of a 1-km strip of copper of rectangular cross section 2.5 cm by 0.05 cm. +clc; +rho=1.724*10^-8 //Restivity of the given material(ohm-metre) +l=1 //Length of strip(km) +A=(2.5*0.05*10^-4)/10^3 //Cross sectional area of copper strip(m^2) +R=(rho*l)/A +disp(R,'Resistance of the given copper strip(ohm)') diff --git a/3504/CH1/EX1.2/Ex1_2.sce b/3504/CH1/EX1.2/Ex1_2.sce new file mode 100644 index 000000000..820318986 --- /dev/null +++ b/3504/CH1/EX1.2/Ex1_2.sce @@ -0,0 +1,9 @@ +//To determine the rise of temperature. +clc; +R_1=3.42 //Resistance at room temperature,at 20 degree C(ohm) +R_2=4.22 //Resistance at full load(ohm) +alpha=0.00426 //Temperature coefficient +T_1=20 //Room temperature(degree C) +T_2=(((R_2*(1+(alpha*T_1)))/R_1)-1)/alpha +R_t=T_2-T_1 +disp(R_t,'Rise in temperature(degree C)') diff --git a/3504/CH2/EX2.13/Ex2_13.sce b/3504/CH2/EX2.13/Ex2_13.sce new file mode 100644 index 000000000..badf1bf8d --- /dev/null +++ b/3504/CH2/EX2.13/Ex2_13.sce @@ -0,0 +1,6 @@ +//To determine the value of the ganged condenser C and resistor R so that the current through Z_l is zero. +clc; +w=100 //(rad/sec) +//Equating real and imaginary parts for [-w^2C^2 + 1/R(2*j*w*C + 1 - (j*10^3)/w)]=0 +C=10^3/(2*w^2) //Capacitance(Farad) +R=1/(w^2*C^2) //Resistance(ohm) diff --git a/3504/CH2/EX2.14/Ex2_14.sce b/3504/CH2/EX2.14/Ex2_14.sce new file mode 100644 index 000000000..139a0f270 --- /dev/null +++ b/3504/CH2/EX2.14/Ex2_14.sce @@ -0,0 +1,8 @@ +//To determine the current through load resistor R of the given circuit. +clc; +Z=[1+%i*1-%i*1+2 -2;-2 2+1] +D=det(Z) +Z_2=[3 1+%i*1;-2 0] +D_2=det(Z_2) +I_2=D_2/D +disp(I_2,'Current through load resistor R(Polar form)') diff --git a/3504/CH2/EX2.15/Ex2_15.sce b/3504/CH2/EX2.15/Ex2_15.sce new file mode 100644 index 000000000..757d52b54 --- /dev/null +++ b/3504/CH2/EX2.15/Ex2_15.sce @@ -0,0 +1,13 @@ +//To determine the voltage V_23 of the given network. +clc; +Z=[(1/2)+(1/3) -(1/3) -(1/2);-(1/3) (1/3)+(1/(%i*4)) 0;-(1/2) 0 (1/2)+(1/(%i*2))] +D=det(Z) +Z_2=[(1/2)+(1/3) 1 -(1/2);-(1/3) 0 0;-(1/2) 0 (1/2)+(1/(%i*2))] +D_2=det(Z_2) +Z_3=[(1/2)+(1/3) -(1/3) 1;-(1/3) (1/3)+(1/(%i*4)) 0;-(1/2) 0 0] +D_3=det(Z_3) +V_2=D_2/D +V_3=D_3/D +V_23=V_2-V_3 +//Using Cramer's rule +disp(V_23,'Required voltage in the polar form(V)') diff --git a/3504/CH2/EX2.16/Ex2_16.sce b/3504/CH2/EX2.16/Ex2_16.sce new file mode 100644 index 000000000..e8a227ef6 --- /dev/null +++ b/3504/CH2/EX2.16/Ex2_16.sce @@ -0,0 +1,5 @@ +//To determine V_23 of the given network. +clc; +I=(3+%i*4)/(3+%i*4+2+%i*2) +V_23=I*(%i*4+2) +//The circuit cannot be solved by mesh analysis as the current source is present.Thus the obtained value is not assumed to be inaccurate. diff --git a/3504/CH2/EX2.19/Ex2_19.sce b/3504/CH2/EX2.19/Ex2_19.sce new file mode 100644 index 000000000..b0e4f729f --- /dev/null +++ b/3504/CH2/EX2.19/Ex2_19.sce @@ -0,0 +1,9 @@ +//To write the KVL equation and obtain the voltage across the capacitor C for the given parameters. +clc; +Z=[5-%i*5 5+%i*3;5+%i*3 10+%i*6] +D=det(Z) +Z_1=[10 5+%i*3;10-%i*10 10+%i*6] +D_1=det(Z_1) +I_1=D_1/D +V=I_1*(-%i*10) +disp(V,'Voltage across the capacitor C(Volts)') diff --git a/3504/CH2/EX2.2/Ex2_2.sce b/3504/CH2/EX2.2/Ex2_2.sce new file mode 100644 index 000000000..c40ec6403 --- /dev/null +++ b/3504/CH2/EX2.2/Ex2_2.sce @@ -0,0 +1,44 @@ +//To calculate the current through each resistor,the voltage across each resistor and the voltage at each node of the circuit. +clc; +R_1=25 +R_2=10 +R_3=15 +R_4=50 +R_5=25 +R_6=100 +R_7=500 +R_8=125 +//Given resistances in kilo-ohm. +Req_123=R_1+R_2+R_3 //Equivalent of(R_1,R_2,R_3) +Req_1234=(Req_123*R_4)/(Req_123+R_4) //Equivalent of(R_1,R_2,R_3,R_4) +Req_678=(R_6*R_7*R_8)/((R_7*R_8)+(R_6*R_8)+(R_6*R_7)) //Equivalent of(R_6,R_7,R_8) +Req=Req_1234+R_5+Req_678 +disp(Req,'Equivalent resistance in kilo-ohm') +V=100 //Volts +i=V/Req //mA +i_1=i/2 //Current through R_1,R_2 andR_3(mA) +i_2=i_1 //Current through R_4(mA) +V_R1=R_1*i_1 //Volts +V_R2=R_2*i_1 //Volts +V_R3=R_3*i_1 //Volts +V_R4=R_4*i_2 //Volts +V_R5=R_5*i //Volts +V_R6=Req_678*i //Volts +V_R7=V_R6 //Volts +V_R8=V_R6 //Volts +i_3=V_R6/(100) //Current through R_6(mA) +i_4=V_R7/(500) //Current through R_7(mA) +i_5=V_R8/(125) //Current through R_8(mA) +V_a=V +V_b=V_a-V_R1 +V_c=V_b-V_R2 +V_d=V_c-V_R3 +V_e=V_d-V_R5 + + + + + + + + diff --git a/3504/CH2/EX2.20/Ex2_20.sce b/3504/CH2/EX2.20/Ex2_20.sce new file mode 100644 index 000000000..3b3475ac0 --- /dev/null +++ b/3504/CH2/EX2.20/Ex2_20.sce @@ -0,0 +1,4 @@ +//To find the equivalent inductive reactance. +clc; +Z=%i*(3+5+6)-%i*2-%i*3+%i*4-%i*2-%i*3+%i*4 +disp(Z,'Equivalent inductive reactance(ohm)') diff --git a/3504/CH2/EX2.21/Ex2_21.sce b/3504/CH2/EX2.21/Ex2_21.sce new file mode 100644 index 000000000..b09ee67b5 --- /dev/null +++ b/3504/CH2/EX2.21/Ex2_21.sce @@ -0,0 +1,8 @@ +//To write KVL equation of the given circuits. +clc; +k=0.5 +wL_1=4 +wL_2=9 +wM=k*(wL_1*wL_2) //ohm +Z_1=[3-%i*1 -3-%i*2;-3-%i*2 8+%i*4] //Impedance matrix of circuit 2.56(a) +Z_2=[3-%i*1 -3-%i*8;-3-%i*8 8+%i*4] //Impedance matrix of circuit 2.56(b) diff --git a/3504/CH2/EX2.26/Ex2_26.sce b/3504/CH2/EX2.26/Ex2_26.sce new file mode 100644 index 000000000..bd730bbd6 --- /dev/null +++ b/3504/CH2/EX2.26/Ex2_26.sce @@ -0,0 +1,14 @@ +//To determine the voltage V_ab across the terminals a,b of the given network. +clc; +M_1=[3+%i*5 10;-2+%i*3 0] +D_1=det(M_1) +M_2=[3+%i*5 -2+%i*3;-2+%i*3 5+%i*5] +D_2=det(M_2) +I_2=D_1/D_2 +V_ab=I_2*3 +disp(V_ab,'Voltage across the terminals a,b of the given network(Polar Form)') + + + + + diff --git a/3504/CH2/EX2.3/Ex2_3.sce b/3504/CH2/EX2.3/Ex2_3.sce new file mode 100644 index 000000000..b19f61b19 --- /dev/null +++ b/3504/CH2/EX2.3/Ex2_3.sce @@ -0,0 +1,16 @@ +//To find the voltage across R,in the given network by mesh analysis. +clc; +R=2 //Resistance(ohm) +Z=[12 -2 0;-2 34 -2;0 -2 12] +D=det(Z) +Z_1=[5 -2 0;0 34 -2;10 -2 12] +D_1=det(Z_1) +Z_2=[12 5 0;-2 0 -2;0 10 12] +D_2=det(Z_2) +Z_3=[12 -2 5;-2 34 0;0 -2 10] +D_3=det(Z_3) +I_2=D_2/D //Current(A) +I_3=D_3/D //Current(A) +V_R=(I_2-I_3)*R +disp(V_R,'Required voltage across R(V)') +//Negative voltage shows reverse polarity,with the numerical value being the same. diff --git a/3504/CH2/EX2.4/Ex2_4.sce b/3504/CH2/EX2.4/Ex2_4.sce new file mode 100644 index 000000000..f64a1358c --- /dev/null +++ b/3504/CH2/EX2.4/Ex2_4.sce @@ -0,0 +1,10 @@ +//To find the power dissipated in the resistor R in the ladder network shown in the given figure. +clc; +R=1 //Resistance(ohm) +Z=[2 -1 0;-1 3 -1;0 -1 3] +D=det(Z) +Z_2=[2 1 0;-1 0 -1;0 0 3] +D_2=det(Z_2) +i_2=D_2/D //Current(A) +P=(i_2)^2*R +disp(P,'Power dissipated in the resistor R(W)') diff --git a/3504/CH2/EX2.5/Ex2_5.sce b/3504/CH2/EX2.5/Ex2_5.sce new file mode 100644 index 000000000..ddbbfbb30 --- /dev/null +++ b/3504/CH2/EX2.5/Ex2_5.sce @@ -0,0 +1,25 @@ +//To determine the current in each loop of the circuit. +clc; +M=[5.11 -0.71 0 -3.25;-0.71 1.86 -0.92 -0.23;0 -0.92 2.86 -1.12;-3.25 -0.23 -1.12 5.55] +D=det(M) +M_1=[1.5 -0.71 0 -3.25;-1.3 1.86 -0.92 -0.23;-7.1 -0.92 2.86 -1.12;-2.1 -0.23 -1.12 5.55] +D_1=det(M_1) +M_2=[5.11 1.5 0 -3.25;-0.71 -1.3 -0.92 -0.23;0 -7.1 2.86 -1.12;-3.25 -2.1 -1.12 5.55] +D_2=det(M_2) +M_3=[5.11 -0.71 1.5 -3.25;-0.71 1.86 -1.3 -0.23;0 -0.92 -7.1 -1.12;-3.25 -0.23 -2.1 5.55] +D_3=det(M_3) +M_4=[5.11 -0.71 0 1.5;-0.71 1.86 -0.92 -1.3;0 -0.92 2.86 -7.1;-3.25 -0.23 -1.12 -2.1] +D_4=det(M_4) +i_1=D_1/D +i_2=D_2/D +i_3=D_3/D +i_4=D_4/D +//Loop currents in Ampere using Cramer's rule,Negative sign indicates that the current is in the reverse direction. + + + + + + + + diff --git a/3504/CH2/EX2.6/Ex2_6.sce b/3504/CH2/EX2.6/Ex2_6.sce new file mode 100644 index 000000000..a1f30d3b1 --- /dev/null +++ b/3504/CH2/EX2.6/Ex2_6.sce @@ -0,0 +1,12 @@ +//To find the voltage V_0 in the given circuit. +clc; +R=30 +Z=[31 -13 0 0 0 -10 0 0 0;-13 35 -9 0 -11 0 0 0 0;0 -9 31 -10 0 0 0 0 0;0 0 -10 79 -30 0 0 0 -9;0 -11 0 -30 53 -7 0 -5 0;-10 0 0 0 -7 47 -30 0 0;0 0 0 0 0 -30 41 0 0;0 0 0 0 -5 0 0 27 -2;0 0 0 -9 0 0 0 -2 29] +D=det(Z) +Z_4=[31 -13 0 -15 0 -10 0 0 0;-13 35 -9 27 -11 0 0 0 0;0 -9 31 -23 0 0 0 0 0;0 0 -10 0 -30 0 0 0 -9;0 -11 0 -20 53 -7 0 -5 0;-10 0 0 12 -7 47 -30 0 0;0 0 0 -7 0 -30 41 0 0;0 0 0 7 -5 0 0 27 -2;0 0 0 -10 0 0 0 -2 29] +D_4=det(Z_4) +i_4=D_4/D //Current(A) +V_0=R*i_4 +disp(V_0,'Required voltage(V)') +//Negative sign indicates opposite direction of current. +//Answer in the book is wrong. diff --git a/3504/CH2/EX2.7/Ex2_7.sce b/3504/CH2/EX2.7/Ex2_7.sce new file mode 100644 index 000000000..23cebb3d6 --- /dev/null +++ b/3504/CH2/EX2.7/Ex2_7.sce @@ -0,0 +1,8 @@ +//To calculate the power delivered by the source in the given circuit. +clc; +Z=[3+%i*1 -%i -2;-%i 2+%i*3 -%i*2;-2 %i*2 3+%i*1] +D=det(Z) +Z_1=[15.7 -%i -2;0 2+%i*3 -%i*2;0 %i*2 3+%i*1] +D_1=det(Z_1) +V_1=D_1/D +//Power delivered =V_1*I*cos(theta)=Real(V_1*I),which on simplification equals 100 watts. diff --git a/3504/CH2/EX2.8/Ex2_8.sce b/3504/CH2/EX2.8/Ex2_8.sce new file mode 100644 index 000000000..f54289a0f --- /dev/null +++ b/3504/CH2/EX2.8/Ex2_8.sce @@ -0,0 +1,12 @@ +//To determine the node voltages for the given network. +clc; +Z=[(1/5)+(1/%i*2)+(1/4) -(1/4);(-1/4) (1/4)+(1/%i*2)+(1/2)] +D=det(Z) +Z_1=[1 -0.25;%i*2.5 0.75+%i*0.5] +D_1=det(Z_1) +V_1=D_1/D //Voltage in polar form +disp(V_1,'Voltage at node 1') +Z_2=[0.45-%i*0.5 -0.25;-0.25 0.75+%i*0.5] +D_2=det(Z_2) +V_2=D_2/D //Voltage in polar form +disp(V_2,'Voltage at node 2') diff --git a/3504/CH2/EX2.9/Ex2_9.sce b/3504/CH2/EX2.9/Ex2_9.sce new file mode 100644 index 000000000..6f0f1d531 --- /dev/null +++ b/3504/CH2/EX2.9/Ex2_9.sce @@ -0,0 +1,12 @@ +//To find the voltage across the capacitor. +clc; +Z=[4+%i*5 -2 -(1+%i*3);-2 5-%i*2 %i*2;-(1+%i*3) %i*2 2+%i*2] +D=det(Z) +Z_2=[4+%i*5 5 -(1+%i*3);-2 0 %i*2;-(1+%i*3) 0 2+%i*2] +D_2=det(Z_2) +I_2=D_2/D //Current in loop 1 in polar form +Z_3=[4+%i*5 -2 5;-2 5-%i*2 0;-(1+%i*3) %i*2 0] +D_3=det(Z_3) +I_3=D_3/D //Current in loop 2 in polar form +V_c=(I_2-I_3)*(-%i*2) +disp(V_c,'Volatge across the capacitor') |