summaryrefslogtreecommitdiff
path: root/3492
diff options
context:
space:
mode:
Diffstat (limited to '3492')
-rw-r--r--3492/CH1/EX1.1/Ex1_1.sce13
-rw-r--r--3492/CH1/EX1.10/Ex1_10.sce20
-rw-r--r--3492/CH1/EX1.11/Ex1_11.sce35
-rw-r--r--3492/CH1/EX1.2/Ex1_2.sce13
-rw-r--r--3492/CH1/EX1.3/Ex1_3.sce9
-rw-r--r--3492/CH1/EX1.4/Ex1_4.sce13
-rw-r--r--3492/CH1/EX1.5/Ex1_5.sce17
-rw-r--r--3492/CH1/EX1.7/Ex1_7.sce25
-rw-r--r--3492/CH1/EX1.8/Ex1_8.sce14
-rw-r--r--3492/CH1/EX1.9/Ex1_9.sce18
-rw-r--r--3492/CH2/EX2.10/Ex2_10.sce15
-rw-r--r--3492/CH2/EX2.11/Ex2_11.sce14
-rw-r--r--3492/CH2/EX2.13/Ex2_13.sce9
-rw-r--r--3492/CH2/EX2.14/Ex2_14.sce9
-rw-r--r--3492/CH2/EX2.16/Ex2_16.sce21
-rw-r--r--3492/CH2/EX2.18/Ex2_18.sce8
-rw-r--r--3492/CH2/EX2.19/Ex2_19.sce12
-rw-r--r--3492/CH2/EX2.2/Ex2_2.sce12
-rw-r--r--3492/CH2/EX2.20/Ex2_20.sce12
-rw-r--r--3492/CH2/EX2.21/Ex2_21.sce16
-rw-r--r--3492/CH2/EX2.3/Ex2_3.sce10
-rw-r--r--3492/CH2/EX2.4/Ex2_4.sce13
-rw-r--r--3492/CH2/EX2.5/Ex2_5.sce27
-rw-r--r--3492/CH2/EX2.7/Ex2_7.sce11
-rw-r--r--3492/CH2/EX2.9/Ex2_9.sce24
-rw-r--r--3492/CH3/EX3.1/Ex3_1.sce11
-rw-r--r--3492/CH3/EX3.10/Ex3_10.sce20
-rw-r--r--3492/CH3/EX3.11/Ex3_11.sce22
-rw-r--r--3492/CH3/EX3.12/Ex3_12.sce18
-rw-r--r--3492/CH3/EX3.13/Ex3_13.sce34
-rw-r--r--3492/CH3/EX3.14/Ex3_14.sce9
-rw-r--r--3492/CH3/EX3.15/Ex3_15.sce18
-rw-r--r--3492/CH3/EX3.16/Ex3_16.sce18
-rw-r--r--3492/CH3/EX3.2/Ex3_2.sce18
-rw-r--r--3492/CH3/EX3.20/Ex3_20.sce10
-rw-r--r--3492/CH3/EX3.21/Ex3_21.sce18
-rw-r--r--3492/CH3/EX3.4/Ex3_4.sce12
-rw-r--r--3492/CH3/EX3.5/Ex3_5.sce22
-rw-r--r--3492/CH3/EX3.6/Ex3_6.sce19
-rw-r--r--3492/CH3/EX3.8/Ex3_8.sce12
-rw-r--r--3492/CH3/EX3.9/Ex3_9.sce10
-rw-r--r--3492/CH4/EX4.10/Ex4_10.sce11
-rw-r--r--3492/CH4/EX4.11/Ex4_11.sce18
-rw-r--r--3492/CH4/EX4.13/Ex4_13.sce18
-rw-r--r--3492/CH4/EX4.14/Ex4_14.sce23
-rw-r--r--3492/CH4/EX4.5/EX4_5.sce11
-rw-r--r--3492/CH4/EX4.6/Ex4_6.sce12
-rw-r--r--3492/CH4/EX4.7/Ex4_7.sce29
-rw-r--r--3492/CH4/EX4.8/Ex4_8.sce18
-rw-r--r--3492/CH4/EX4.9/Ex4_9.sce18
-rw-r--r--3492/CH5/EX5.1/Ex5_1.sce23
-rw-r--r--3492/CH5/EX5.11/Ex5_11.sce32
-rw-r--r--3492/CH5/EX5.13/Ex5_13.sce12
-rw-r--r--3492/CH5/EX5.17/Ex5_17.sce12
-rw-r--r--3492/CH5/EX5.18/Ex5_18.sce23
-rw-r--r--3492/CH5/EX5.2/Ex5_2.sce10
-rw-r--r--3492/CH5/EX5.3/Ex5_3.sce21
-rw-r--r--3492/CH5/EX5.4/Ex5_4.sce10
-rw-r--r--3492/CH5/EX5.5/Ex5_5.sce24
-rw-r--r--3492/CH5/EX5.7/Ex5_7.sce19
-rw-r--r--3492/CH5/EX5.9/Ex5_9.sce19
-rw-r--r--3492/CH6/EX6.1/Ex6_1.sce18
-rw-r--r--3492/CH6/EX6.10/Ex6_10.sce12
-rw-r--r--3492/CH6/EX6.11/Ex6_11.sce18
-rw-r--r--3492/CH6/EX6.13/Ex6_13.sce10
-rw-r--r--3492/CH6/EX6.2/Ex6_2.sce19
-rw-r--r--3492/CH6/EX6.3/Ex6_3.sce52
-rw-r--r--3492/CH6/EX6.5/Ex6_5.sce25
-rw-r--r--3492/CH6/EX6.6/Ex6_6.sce17
-rw-r--r--3492/CH6/EX6.7/Ex6_7.sce43
-rw-r--r--3492/CH6/EX6.8/Ex6_8.sce23
-rw-r--r--3492/CH6/EX6.9/Ex6_9.sce24
-rw-r--r--3492/CH7/EX7.1/Ex7_1.sce16
-rw-r--r--3492/CH7/EX7.10/Ex7_10.sce27
-rw-r--r--3492/CH7/EX7.11/Ex7_11.sce20
-rw-r--r--3492/CH7/EX7.12/Ex7_12.sce13
-rw-r--r--3492/CH7/EX7.13/Ex7_13.sce9
-rw-r--r--3492/CH7/EX7.14/Ex7_14.sce16
-rw-r--r--3492/CH7/EX7.15/Ex7_15.sce14
-rw-r--r--3492/CH7/EX7.2/Ex7_2.sce21
-rw-r--r--3492/CH7/EX7.3/Ex7_3.sce24
-rw-r--r--3492/CH7/EX7.6/Ex7_6.sce31
-rw-r--r--3492/CH7/EX7.7/Ex7_7.sce32
-rw-r--r--3492/CH8/EX8.3/Ex8_3.sce13
-rw-r--r--3492/CH8/EX8.5/Ex8_5.sce13
-rw-r--r--3492/CH8/EX8.7/Ex8_7.sce16
86 files changed, 1550 insertions, 0 deletions
diff --git a/3492/CH1/EX1.1/Ex1_1.sce b/3492/CH1/EX1.1/Ex1_1.sce
new file mode 100644
index 000000000..d1b7ef6e7
--- /dev/null
+++ b/3492/CH1/EX1.1/Ex1_1.sce
@@ -0,0 +1,13 @@
+clc
+//Chapter1
+//Ex_1.1
+//Given
+A=8*10^-77 // in J m^6
+B=1.12*10^-133 // in J m^12
+//lennard-Jones 6-12 potential Energy (PE)curve is E(r)=-A*r^-6+B*r^-12
+//For bonding to occur PE should be minimum, hence differentiating the PE equation and setting it to Zero at r=ro we get
+ro=(2*B/A)^(1/6)
+disp(ro,"Bond length in meters is")
+E_bond= -A*ro^-6+(B*ro^-12)//in J
+E_bond=abs(E_bond/(1.6*10^-19))
+disp(E_bond,"Bond Energy for solid argon in ev is")
diff --git a/3492/CH1/EX1.10/Ex1_10.sce b/3492/CH1/EX1.10/Ex1_10.sce
new file mode 100644
index 000000000..55b46cae6
--- /dev/null
+++ b/3492/CH1/EX1.10/Ex1_10.sce
@@ -0,0 +1,20 @@
+clc
+//Chapter1
+//Ex_1.10
+//Given
+NA=6.023*10^23 //mol^-1
+d=2.33 //density of Si in g/cm3
+Mat=28.09//g/mol
+Ev=2.4 //ev/atom
+Ev=2.4*1.6*10^-19 //J/atom
+k=1.38*10^-23 //J/K
+T=300 //kelvin
+T1=1000//degree celcius
+T1=T1+273 //in kelvin
+N= (NA*d)/Mat
+//at room temperature
+nv=N*exp(-(Ev/(k*T)))
+disp(nv,"concentration of vacancies in a Si crystal at room temperature in cm^-3 is")
+//at 1000 degree celcius
+nv=N*exp(-(Ev/(k*T1)))
+disp(nv,"concentration of vacancies in a Si crystal at 1000 degree celcius in cm^-3 is")
diff --git a/3492/CH1/EX1.11/Ex1_11.sce b/3492/CH1/EX1.11/Ex1_11.sce
new file mode 100644
index 000000000..78d049453
--- /dev/null
+++ b/3492/CH1/EX1.11/Ex1_11.sce
@@ -0,0 +1,35 @@
+clc
+//Chapter1
+//Ex_1.11
+//Given
+//from fig 7.1
+//at 210 degree celcius
+disp("At 210 degree celcius")
+C_L=50 //CL=50% Sn
+C_alpha=18 //C_alpha=18% Sn
+Co=40 // solidification of alloy
+//lever rule
+W_alpha=(C_L-Co)/(C_L-C_alpha)
+disp(W_alpha*100,"weight fraction of alpha in the alloy is")
+W_L=1-W_alpha
+disp(W_L*100,"weight fraction of liquid phase in the alloy is")
+//at 183.5 degree celcius
+disp("At 183.5 degree celcius")
+C_L=61.9 //CL=50% Sn
+C_alpha=19.2 //C_alpha=18% Sn
+Co=40 // solidification of alloy
+//lever rule
+W_alpha=(C_L-Co)/(C_L-C_alpha)
+disp(W_alpha*100,"weight fraction of alpha in the alloy is")
+W_L=1-W_alpha
+disp(W_L*100,"weight fraction of liquid phase in the alloy is")
+//at 182.5 degree celcius
+disp("At 182.5 degree celcius")
+C_beta=97.5 //CL=50% Sn
+C_alpha=19.2 //C_alpha=18% Sn
+Co=40 // solidification of alloy
+//lever rule
+W_alpha=(C_beta-Co)/(C_beta-C_alpha)
+disp(W_alpha*100,"weight fraction of alpha in the alloy is")
+W_beta=1-W_alpha
+disp(W_beta*100,"weight fraction of beta phase in the alloy is")
diff --git a/3492/CH1/EX1.2/Ex1_2.sce b/3492/CH1/EX1.2/Ex1_2.sce
new file mode 100644
index 000000000..ebf88c0b3
--- /dev/null
+++ b/3492/CH1/EX1.2/Ex1_2.sce
@@ -0,0 +1,13 @@
+clc
+//Chapter1
+//Ex_1.2
+//Given
+R=8.314 // in J/mol/K
+T=27 //in degree celcius
+T=T+273 //in Kelvin
+M_at=14 //in g/mol
+//From Kinetic Theory
+V_rms=sqrt((3*R*T)/(2*M_at*10^-3))
+disp(V_rms,"rms velocity of Nitrogen molecule in atmosphere at 300K in m/s is")
+V_rmsx=V_rms/sqrt(3)
+disp(V_rmsx,"rms velocity in one direction in m/s is")
diff --git a/3492/CH1/EX1.3/Ex1_3.sce b/3492/CH1/EX1.3/Ex1_3.sce
new file mode 100644
index 000000000..17ebc640d
--- /dev/null
+++ b/3492/CH1/EX1.3/Ex1_3.sce
@@ -0,0 +1,9 @@
+clc
+//Chapter1
+//Ex_1.3
+//Given
+R=8.314 // in J/mol/K
+M_at=63.6 //in g/mol
+//Acc. to Dulong -Petit rule Cm=3R for NA atoms
+C_gram=3*R/M_at
+disp(C_gram,"Heat Capacity of copper per unit gram in J/g/K is")
diff --git a/3492/CH1/EX1.4/Ex1_4.sce b/3492/CH1/EX1.4/Ex1_4.sce
new file mode 100644
index 000000000..41c14c2a6
--- /dev/null
+++ b/3492/CH1/EX1.4/Ex1_4.sce
@@ -0,0 +1,13 @@
+clc
+//Chapter1
+//Ex_1.4
+//Given
+k=1.38*10^-23 //in J/K
+m=9.1*10^-31 // in Kg
+T=300 // in Kelvin
+v_av=sqrt(8*k*T/(%pi*m))
+disp(v_av*10^-3,"Mean speed for a gas of non interacting electrons in Km is ")
+v=sqrt(2*k*T/(m))
+disp(v*10^-3,"Most probable speed for a gas of non interacting electrons in Km is")
+v_rms=sqrt(3*k*T/(m))
+disp(v_rms*10^-3,"rms velocity for a gas of non interacting electrons in Km is")
diff --git a/3492/CH1/EX1.5/Ex1_5.sce b/3492/CH1/EX1.5/Ex1_5.sce
new file mode 100644
index 000000000..f9dcef837
--- /dev/null
+++ b/3492/CH1/EX1.5/Ex1_5.sce
@@ -0,0 +1,17 @@
+clc
+//Chapter1
+//Ex_1.5
+//Given
+L=100*10^-6//in Henry
+C=100 *10^-12 //in Farad
+T=300 // in Kelvin
+R=200*10^3 //in ohms
+k=1.38*10^-23 //in J/K
+fo=1/(2*%pi*sqrt(L*C))//resonant frequency
+Q=2*%pi*fo*C*R//quality factor
+B=fo/Q //Bandwidth of tuned RLC
+//Acc. to Johnson resistor noise equation
+Vrms=sqrt(4*k*T*R*B) //in volts
+Vrms=Vrms/10^-6 //in micro volts
+disp(Vrms," Minimum rms radio signal that can be detected in micro volts is")
+
diff --git a/3492/CH1/EX1.7/Ex1_7.sce b/3492/CH1/EX1.7/Ex1_7.sce
new file mode 100644
index 000000000..4aedd9331
--- /dev/null
+++ b/3492/CH1/EX1.7/Ex1_7.sce
@@ -0,0 +1,25 @@
+clc
+//Chapter1
+//Ex_1.7
+//Given
+n=4
+M_at=63.55*10^-3//Kg/mol
+NA=6.022*10^23 //mol^-1
+R=0.128// in nm
+c=8 //no.of cornersof unit cells
+f=6 //no.of faces of unit cells
+//a
+N=c*(1/8)+f*(1/2)
+disp(N,"No. of atoms per unit cells is")
+//b
+//Lattice parameter
+a=R*2*2^(1/2)
+disp(a,"Lattice Parameter in nm is")
+a=a*10^-9 //in m
+//c
+//APF=(No.of atoms in unit cell)*(Vol. of atom)/(Vol. of unit cell)
+APF=4^2*%pi/(3*(2*sqrt(2))^3)
+disp(APF,"Atomic Packing Factor is")
+//d
+p=n*M_at/(a^3*NA) //density
+disp(p,"density of Copper in Kg/m3 is")
diff --git a/3492/CH1/EX1.8/Ex1_8.sce b/3492/CH1/EX1.8/Ex1_8.sce
new file mode 100644
index 000000000..5fb793144
--- /dev/null
+++ b/3492/CH1/EX1.8/Ex1_8.sce
@@ -0,0 +1,14 @@
+clc
+//Chapter1
+//Ex_1.8
+//Given
+a=1/%inf
+b=-1/1
+c=2/1
+p = int32([1,1,1])
+// 1/%inf = 0 ; (0/1 -1/1 2/1) hence lcm is taken for [1 1 1]
+LCM = lcm(p)
+h=a*double(LCM)
+k=b*double(LCM)
+l=c*double(LCM)
+ mprintf('miller indices = %d %d %d',h,k,l)
diff --git a/3492/CH1/EX1.9/Ex1_9.sce b/3492/CH1/EX1.9/Ex1_9.sce
new file mode 100644
index 000000000..a751d7034
--- /dev/null
+++ b/3492/CH1/EX1.9/Ex1_9.sce
@@ -0,0 +1,18 @@
+clc
+//Chapter1
+//Ex_1.9
+//Given
+k=1.38*10^-23 //J/K
+T=300 //kelvin
+Ev=0.75 //eV/atom
+Ev=Ev*1.6*10^-19 //in J
+T1=660//degree celcius
+T1=T1+273 //in kelvin
+//at room temperature
+//let nv/N=nv_N for convenience
+nv_N=exp(-Ev/(k*T))
+disp(nv_N,"Fractional concentration of vacancies in the aluminium crystal at room temperature is")
+//at melting temperature
+//let nv/N=nv_N for convenience
+nv_N=exp(-Ev/(k*T1))
+disp(nv_N,"Fractional concentration of vacancies in the aluminium crystal at melting temperature is")
diff --git a/3492/CH2/EX2.10/Ex2_10.sce b/3492/CH2/EX2.10/Ex2_10.sce
new file mode 100644
index 000000000..f525cac3a
--- /dev/null
+++ b/3492/CH2/EX2.10/Ex2_10.sce
@@ -0,0 +1,15 @@
+clc
+//Chapter2
+//Ex_2.10
+//Given
+M_Au=197
+w=0.1
+M_Cu=63.55
+p_exp=108 //n*ohm*m
+X=M_Au*w/((1-w)*M_Cu+(w*M_Au))
+C=450//n*ohm*m
+p_Au=22.8 // resistivity in n*ohm*m
+p=p_Au+C*X*(1-X) //Nordheim rule
+x=((p-p_exp)/p)*100
+disp(p,"resistivity of the alloy in n*ohm*m is")
+disp(x,"The difference in the value from experimental value in % is")
diff --git a/3492/CH2/EX2.11/Ex2_11.sce b/3492/CH2/EX2.11/Ex2_11.sce
new file mode 100644
index 000000000..1cd45a7d1
--- /dev/null
+++ b/3492/CH2/EX2.11/Ex2_11.sce
@@ -0,0 +1,14 @@
+clc
+//Chapter2
+//Ex_2.11
+//Given
+u=1.58*10^6 //in m/s
+N=8.5*10^28 //m^-3
+e=1.6*10^-19 // in coulombs
+me=9.1*10^-31 //in Kg
+N_I=0.01*N
+l_I=N_I^(-1/3)
+t_I=l_I/u
+p=me/(e^2*N*t_I)
+disp(p," worst case resistivity in ohm*m")
+//slight change in answer due to computational method
diff --git a/3492/CH2/EX2.13/Ex2_13.sce b/3492/CH2/EX2.13/Ex2_13.sce
new file mode 100644
index 000000000..a73ede789
--- /dev/null
+++ b/3492/CH2/EX2.13/Ex2_13.sce
@@ -0,0 +1,9 @@
+clc
+//Chapter2
+//Ex_2.13
+//Given
+Xd=0.15
+p_c=1*10^-7 //ohm*m
+p_eff=p_c*((1+0.5*Xd)/(1-Xd))
+disp(p_eff,"Effective resistivity in ohm m is")
+//slight change in the answer due to printing the answer
diff --git a/3492/CH2/EX2.14/Ex2_14.sce b/3492/CH2/EX2.14/Ex2_14.sce
new file mode 100644
index 000000000..5e4abd604
--- /dev/null
+++ b/3492/CH2/EX2.14/Ex2_14.sce
@@ -0,0 +1,9 @@
+clc
+//Chapter2
+//Ex_2.14
+//Given
+Xd=0.15
+p_c=4*10^-8 //ohm*m
+p_eff=p_c((1+0.5*Xd)/(1-Xd))
+disp(p_eff,"Effective resistivity in ohm m is")
+// change in the answer due to coding
diff --git a/3492/CH2/EX2.16/Ex2_16.sce b/3492/CH2/EX2.16/Ex2_16.sce
new file mode 100644
index 000000000..f30ba9b1d
--- /dev/null
+++ b/3492/CH2/EX2.16/Ex2_16.sce
@@ -0,0 +1,21 @@
+clc
+//Chapter2
+//Ex_2.16
+//Given
+//at f=10MHz
+a=10^-3 //in m
+f=10*10^6 //in Hz
+w=2*%pi*f
+sigma_dc=5.9*10^7 // in m^-1
+u=1.257*10^-6 //in Wb/A/m
+delta=1/sqrt(0.5*w*sigma_dc*u)
+//let r=r_ac/r_dc=a/(2*delta)
+r=a/(2*delta)
+disp(r,"Change in dc resistance of a copper wire at 10MHz is")
+//part(b)
+f=1*10^9 //in Hz
+w=2*%pi*f
+delta=1/sqrt(0.5*w*sigma_dc*u)
+//let r=r_ac/r_dc=a/(2*delta)
+r=a/(2*delta)
+disp(r,"Change in dc resistance of a copper wire at 1GHz is")
diff --git a/3492/CH2/EX2.18/Ex2_18.sce b/3492/CH2/EX2.18/Ex2_18.sce
new file mode 100644
index 000000000..58676f9ee
--- /dev/null
+++ b/3492/CH2/EX2.18/Ex2_18.sce
@@ -0,0 +1,8 @@
+clc
+//Chapter2
+//Ex_2.18
+//Given
+sigma=5.9*10^7 //ohm^-1*m^-2
+RH=-0.55*10^-10//m^3/A/s
+u_d=-RH*sigma
+disp(u_d,"drift mobility of electrons in copper in m2/V/s")
diff --git a/3492/CH2/EX2.19/Ex2_19.sce b/3492/CH2/EX2.19/Ex2_19.sce
new file mode 100644
index 000000000..ac5f0b57d
--- /dev/null
+++ b/3492/CH2/EX2.19/Ex2_19.sce
@@ -0,0 +1,12 @@
+clc
+//Chapter2
+//Ex_2.19
+//Given
+no=8.5*10^28 // in m3
+e=1.6*10^-19 //in coulombs
+u_d=3.2*10^-3 //m2/V/s
+sigma=5.9*10^7 //in ohm^-1*m^-1
+n=sigma/(e*u_d)
+disp(n,"concentration of conduction electrons in copper in m^-3 is")
+A=n/no
+disp(A,"Average number of electrons contributed per atom is")
diff --git a/3492/CH2/EX2.2/Ex2_2.sce b/3492/CH2/EX2.2/Ex2_2.sce
new file mode 100644
index 000000000..1f26562e7
--- /dev/null
+++ b/3492/CH2/EX2.2/Ex2_2.sce
@@ -0,0 +1,12 @@
+clc
+//Chapter2
+//Ex_2.2
+//Given
+sigma=5.9*10^5 //in ohm^-1*cm^-1
+e=1.6*10^-19 //Coulombs
+d=8.93 //g/cm^3
+Mat=63.5//g/mol
+NA=6.02*10^23//mol^-1
+n=d*NA/Mat
+u_d=sigma/(e*n)//electron drift mobility
+disp(u_d,"Drift mobility of electrons in copper at room temperature in cm2/V/s is")
diff --git a/3492/CH2/EX2.20/Ex2_20.sce b/3492/CH2/EX2.20/Ex2_20.sce
new file mode 100644
index 000000000..b59dcb3eb
--- /dev/null
+++ b/3492/CH2/EX2.20/Ex2_20.sce
@@ -0,0 +1,12 @@
+clc
+//Chapter2
+//Ex_2.20
+//Given
+sigma=1*10^7 //ohm^-1*m^-1
+T=300// kelvin
+C_WFL=2.44*10^-8 //W*ohm/K2
+X_d=0.15
+K_c=sigma*T*C_WFL
+K_eff=K_c*((1-X_d)/(1+0.5*X_d))
+disp(K_eff,"Thermal Conductiity at room temperature in W/m/K")
+
diff --git a/3492/CH2/EX2.21/Ex2_21.sce b/3492/CH2/EX2.21/Ex2_21.sce
new file mode 100644
index 000000000..04df21917
--- /dev/null
+++ b/3492/CH2/EX2.21/Ex2_21.sce
@@ -0,0 +1,16 @@
+clc
+//Chapter2
+//Ex_2.21
+//Given
+sigma=50*10^-9//in ohm
+T=300 //kelvin
+C_WFL=2.45*10^-8 //in W*ohm/K2
+L=30*10^-3 //in m
+d=20*10^-3 //in m
+Q=10 //in W
+//Wiedemann-Franz Lorenz Law
+k=sigma^-1*T*C_WFL //thermal conductivity
+A=%pi*(d^2)/4
+theta=L/(k*A) //thermal resistance
+delta_T=theta*Q
+disp(delta_T,"Temperature drop across the disk in degree celcius is")
diff --git a/3492/CH2/EX2.3/Ex2_3.sce b/3492/CH2/EX2.3/Ex2_3.sce
new file mode 100644
index 000000000..37e253122
--- /dev/null
+++ b/3492/CH2/EX2.3/Ex2_3.sce
@@ -0,0 +1,10 @@
+clc
+//Chapter2
+//Ex_2.3
+//Given
+u_d=3.2*10^-3 //in m^2/V/s
+u=1.2*10^6 //m/s
+v_dx=0.1*u
+// drift velocity of conduction electrons is v_dx=u_d*E
+E=v_dx/u_d
+disp(E,"Applied electric field in V/m is")
diff --git a/3492/CH2/EX2.4/Ex2_4.sce b/3492/CH2/EX2.4/Ex2_4.sce
new file mode 100644
index 000000000..75253ce9f
--- /dev/null
+++ b/3492/CH2/EX2.4/Ex2_4.sce
@@ -0,0 +1,13 @@
+clc
+//Chapter2
+//Ex_2.4
+//Given
+T_summer=20 //in degree celcius
+T_summer=T_summer+273 //in kelvin
+T_winter=-30 //in degree celcius
+T_winter=T_winter+273 //in kelvin
+//we have R is proportional to A*T
+//Hence
+R=(T_summer-T_winter)/T_summer
+R=R*100
+disp(R," Percentage change in the resistance of a pure metalwire from Saskatchewans summer too winter in % is ")
diff --git a/3492/CH2/EX2.5/Ex2_5.sce b/3492/CH2/EX2.5/Ex2_5.sce
new file mode 100644
index 000000000..35cda6d35
--- /dev/null
+++ b/3492/CH2/EX2.5/Ex2_5.sce
@@ -0,0 +1,27 @@
+clc
+//Chapter2
+//Ex_2.5
+//Given
+d=8.96*10^3 //in Kg/m3
+NA=6.02*10^23 //mol^-1
+Mat=63.56*10^-3 //Kg/mol
+k=1.38*10^-23 //J/K
+T=300 //kelvin
+e=1.6*10^-19 //in couloumbs
+m_e= 9.1*10^-31 //in Kg
+u=1.25*10^6//m/s
+f=4*10^12 //frequency in s^-1
+Ns=d*NA/Mat// atomic concentration in m^-3
+M=Mat/NA
+w=2*%pi*f //angular frequency of the vibration
+//by virtue of Equipartition of energy theorem
+a=sqrt((2*k*T)/(M*w^2))
+S=%pi*a^2 //cross sectional area
+t=1/(S*u*Ns) //mean free time
+u_d=e*t/m_e //drift velocity
+u_d=u_d*10^4 //change in units
+Ns=Ns/10^6 //in cm^-3
+sigma=e*Ns*u_d //conductivity
+disp(u_d,"drift velocity of electrons in m2/V/s is")
+disp(sigma," conductivity of copper in ohm^-1/cm is")
+//slight change in the answer is due to the computation method, otherwise answer is matching with textbook
diff --git a/3492/CH2/EX2.7/Ex2_7.sce b/3492/CH2/EX2.7/Ex2_7.sce
new file mode 100644
index 000000000..7f0d9d9c2
--- /dev/null
+++ b/3492/CH2/EX2.7/Ex2_7.sce
@@ -0,0 +1,11 @@
+clc
+//Chapter2
+//Ex_2.7
+//Given
+n=1.2
+To=293 //in kelvin
+alpha_o=n/To
+printf("Theoretical value of TCR at 293K is %f which is in well agreement with exprimental value",alpha_o)
+alpha_o=0.00393 //experimental value
+n=alpha_o*To
+disp(n,"Theoretical value of n at 293K is in well agreement with exprimental value")
diff --git a/3492/CH2/EX2.9/Ex2_9.sce b/3492/CH2/EX2.9/Ex2_9.sce
new file mode 100644
index 000000000..36f2bdf7b
--- /dev/null
+++ b/3492/CH2/EX2.9/Ex2_9.sce
@@ -0,0 +1,24 @@
+clc
+//Chapter2
+//Ex_2.9
+//Given
+P=40 //in Watt
+V=120 //in Volts
+D=33*10^-6 //in meter
+L=0.381 //in meter
+To=293 // in kelvin
+P_radiated=40//in watt
+epsilon=0.35
+sigma_s=5.6*10^-8 //in W/m2/K4
+I=P/V
+A=%pi*D^2/4
+R=V/I // resistance of the filament
+p_t=R*A/L // resistivity of tungsten
+p_o=5.51*10^-8 // resistivity at room temperature in ohm*m
+//p_t=p_o*(T/To)^1.2
+T=To*(p_t/p_o)^(1/1.2)
+disp(T,"Temperature of the bulb when it is operated at the rated voltage in Kelvin is ")
+A=L*%pi*D
+//Stefans Law
+T=(P_radiated/(epsilon*sigma_s*A))^(1/4)
+disp(T,"Temperature of the filament in kelvin is")
diff --git a/3492/CH3/EX3.1/Ex3_1.sce b/3492/CH3/EX3.1/Ex3_1.sce
new file mode 100644
index 000000000..0ed36dd54
--- /dev/null
+++ b/3492/CH3/EX3.1/Ex3_1.sce
@@ -0,0 +1,11 @@
+clc
+//Chapter3
+//Ex_1
+//Given
+lambda=450*10^-9 // in nm
+h=6.6*10^-34 //in J s
+e=1.6*10^-19 // in coulombs
+c=3*10^8 //in m/s
+E_ph=h*c/lambda //in J
+E_ph=E_ph/e // in eV
+disp(E_ph," Energy of blue photon in eV is")
diff --git a/3492/CH3/EX3.10/Ex3_10.sce b/3492/CH3/EX3.10/Ex3_10.sce
new file mode 100644
index 000000000..9a63e513a
--- /dev/null
+++ b/3492/CH3/EX3.10/Ex3_10.sce
@@ -0,0 +1,20 @@
+clc
+//Chapter3
+//Ex_10
+//Given
+h_bar=1.054*10^-34 // in J s
+m=9.1*10^-31 //in Kg
+e=1.6*10^-19 // in coulombs
+Vo=10 //in ev
+Vo=Vo*e //in J
+E=7 // in eV
+E=E*e // in J
+a=5*10^-9 // in m
+alpha=sqrt(2*m*(Vo-E)/h_bar^2)
+To=16*E*(Vo-E)/Vo^2
+T=To*exp(-2*alpha*a)
+disp(T,"Transmission coefficient of condution electrons in copper is")
+a=1*10^-9 // in m
+T=To*exp(-2*alpha*a)
+disp(T,"Transmission coefficient if the oxide barrier is 1 nm is")
+// slight change in the answer due to approximations in alpha value
diff --git a/3492/CH3/EX3.11/Ex3_11.sce b/3492/CH3/EX3.11/Ex3_11.sce
new file mode 100644
index 000000000..d3a4a057b
--- /dev/null
+++ b/3492/CH3/EX3.11/Ex3_11.sce
@@ -0,0 +1,22 @@
+clc
+//Chapter3
+//Ex_11
+//Given
+h_bar=1.054*10^-34 // in J s
+m=100// in Kg
+g=10 // in m/s2
+h=10 // in m
+h1=15 // in m
+a=10 // in m
+E=m*g*h //total energy of carriage
+Vo=m*g*h1 // PE required to reach the peak
+alpha=sqrt(2*m*(Vo-E)/h_bar^2)
+To=16*E*(Vo-E)/Vo^2
+T=To*exp(-2*alpha*a)
+disp(T, "Transmission probability is")
+//clculation using h_bar=10 KJs
+h_bar=10*10^3 //Js
+alpha=sqrt(2*m*(Vo-E)/h_bar^2)
+D=Vo^2/(4*E*(Vo-E))
+T=(1+(sinh(alpha*a))^2)^-1
+disp(T,"transmission probability in a universe where h_bar is 10KJs is")
diff --git a/3492/CH3/EX3.12/Ex3_12.sce b/3492/CH3/EX3.12/Ex3_12.sce
new file mode 100644
index 000000000..4ab40873c
--- /dev/null
+++ b/3492/CH3/EX3.12/Ex3_12.sce
@@ -0,0 +1,18 @@
+clc
+//Chapter3
+//Ex_12
+//Given
+x=9
+for n1=1:x
+ for n2=1:x
+ for n3=1:x
+y=n1^2+n2^2+n3^2 //let y=N^2=n1^2+n2^2+n3^2
+if (y==41)
+
+ mprintf('%d\t%d\t%d\n',n1 ,n2 ,n3 )
+
+end;
+end
+end
+end
+disp("Thus there are nine possible states")
diff --git a/3492/CH3/EX3.13/Ex3_13.sce b/3492/CH3/EX3.13/Ex3_13.sce
new file mode 100644
index 000000000..7b23fe575
--- /dev/null
+++ b/3492/CH3/EX3.13/Ex3_13.sce
@@ -0,0 +1,34 @@
+clc
+//Chapter3
+//Ex_13
+//Given
+h=6.6*10^-34 //in J s
+c=3*10^8 //in m/s
+m=9.1*10^-31 //in Kg
+e=1.6*10^-19 // in coulombs
+v=2.1*10^6 // in m/s
+E=m*v^2/2 //in J
+E=E/e // in eV
+E1=-13.6 // in eV
+//change in the energy is E=En-E1
+n=sqrt(-13.6/(E+E1))
+printf(" the electron gets excited to %d level",n)
+n=3
+E3=-13.6/n^2
+delta_E31=E3-E1 // in eV
+delta_E31=delta_E31*e //in J
+lambda_31=h*c/delta_E31
+disp(lambda_31*10^9,"wavelength of emmited radiation from n=3 to n=1 in nm is")
+//Another probability is transition fromm n=3 to n=2
+n=2
+E2=-13.6/n^2
+delta_E32=E3-E2 // in eV
+delta_E32=delta_E32*e // in J
+lambda_32=h*c/delta_E32
+disp(lambda_32*10^9,"wavelength of emmited radiation from n=3 to n=2 in nm is")
+//Another probability is transition fromm n=2 to n=1
+E2=-13.6/n^2
+delta_E21=E2-E1 // in eV
+delta_E21=delta_E21*e // in J
+lambda_21=h*c/delta_E21
+disp(lambda_21*10^9,"wavelength of emmited radiation from n=2 to n=1 in nm is")
diff --git a/3492/CH3/EX3.14/Ex3_14.sce b/3492/CH3/EX3.14/Ex3_14.sce
new file mode 100644
index 000000000..884b00a6d
--- /dev/null
+++ b/3492/CH3/EX3.14/Ex3_14.sce
@@ -0,0 +1,9 @@
+clc
+//Chapter3
+//Ex_14
+//Given
+Z=2
+n=1
+E1=-Z^2*13.6/n^2
+E1=abs(E1)
+disp(E1,"Energy required to ionize He+ further in eV is")
diff --git a/3492/CH3/EX3.15/Ex3_15.sce b/3492/CH3/EX3.15/Ex3_15.sce
new file mode 100644
index 000000000..4cca773e1
--- /dev/null
+++ b/3492/CH3/EX3.15/Ex3_15.sce
@@ -0,0 +1,18 @@
+clc
+//Chapter3
+//Ex_15
+//Given
+Z=1
+n1=2
+n2=3
+R_inf=1.0974*10^7 // in m^-1
+//Let x=1/lambda
+x=R_inf*Z^2*((1/n1^2)-(1/n2^2))
+lambda=1/x
+disp(lambda*10^10, "Wavelength of first spectral line in Angstroms is")
+n1=2
+n2=4
+x=R_inf*Z^2*((1/n1^2)-(1/n2^2))
+lambda=1/x
+disp(lambda*10^10, "Wavelength of second spectral line in Angstroms is")
+disp("These spectral lines correspond to H_alpha and H_beta lines of Hydrogen")
diff --git a/3492/CH3/EX3.16/Ex3_16.sce b/3492/CH3/EX3.16/Ex3_16.sce
new file mode 100644
index 000000000..f05c52772
--- /dev/null
+++ b/3492/CH3/EX3.16/Ex3_16.sce
@@ -0,0 +1,18 @@
+clc
+//Chapter3
+//Ex_16
+//Given
+h=6.6*10^-34 //in J s
+e=1.6*10^-19 // in coulombs
+E1=13.6 //in eV
+E1=E1*e //in J
+Z=1
+n1=109
+n2=110
+ao=52.918*10^-12 // in m
+v=Z^2*E1*((1/n1^2)-(1/n2^2))/h
+disp(v*10^-6,"Frequency of radiation in MHz is")
+disp("The frequency of radiation in the transition from n1=109 to n2=110 is same as that of the detected frequency .Hence, the radiation comes from excited hydrogen atoms in the give transition")
+x=2*n2^2*ao
+disp(x*10^6,"The sie of the atom in micro meter is")
+//slight difference in the answer is due to approximations
diff --git a/3492/CH3/EX3.2/Ex3_2.sce b/3492/CH3/EX3.2/Ex3_2.sce
new file mode 100644
index 000000000..0fce4abfe
--- /dev/null
+++ b/3492/CH3/EX3.2/Ex3_2.sce
@@ -0,0 +1,18 @@
+clc
+//Chapter3
+//Ex_2
+//Given
+lambda_o=522*10^-9 // in nm
+lambda=250*10^-9 // in nm
+h=6.6*10^-34 //in J s
+c=3*10^8 //in m/s
+e=1.6*10^-19 //in coulombs
+I=20*10^-3 //in W/cm2
+I=20*10^-3*10^4 //in J/s/m2
+//part(a)
+phi=h*c/(lambda_o*e) //in eV
+disp(phi,"Work function of sodium in eV is")
+KE=h*c/(lambda*e)-phi
+disp(KE,"Kinetic energy of photoemitted electrons in eV is")
+J=(e*I*lambda)/(h*c)
+disp(J,"Photoelectric current density in A/m2 is")
diff --git a/3492/CH3/EX3.20/Ex3_20.sce b/3492/CH3/EX3.20/Ex3_20.sce
new file mode 100644
index 000000000..c2d2c0f02
--- /dev/null
+++ b/3492/CH3/EX3.20/Ex3_20.sce
@@ -0,0 +1,10 @@
+clc
+//Chapter3
+//Ex_20
+//Given
+P_out=2.5*10^-3 // in Watt
+I=5*10^-3 // in Amp
+V=2000 // in volts
+P_in=V*I
+E=(P_out/P_in)*100
+disp(E,"Efficiency of the laser in % is")
diff --git a/3492/CH3/EX3.21/Ex3_21.sce b/3492/CH3/EX3.21/Ex3_21.sce
new file mode 100644
index 000000000..9566fa405
--- /dev/null
+++ b/3492/CH3/EX3.21/Ex3_21.sce
@@ -0,0 +1,18 @@
+clc
+//Chapter3
+//Ex_21
+//Given
+lambda_o=632.8*10^-9 //in m
+c=3*10^8 //in m/s
+T=127 //in degree celcius
+T=T+273 // in Kelvin
+m_A=20.2*10^-3 // in Kg/mol
+NA=6.023*10^23 //mol^-1
+k=1.38*10^-23 //in J/K
+m=m_A/NA //in Kg
+vx=sqrt(k*T/m)
+vo=c/lambda_o
+delta_v=2*vo*vx/c
+disp(delta_v*10^-9,"delta_v in GHz is")
+delta_lambda=delta_v*(-lambda_o/vo)
+disp(abs(delta_lambda),"delta_lambda in meters is")
diff --git a/3492/CH3/EX3.4/Ex3_4.sce b/3492/CH3/EX3.4/Ex3_4.sce
new file mode 100644
index 000000000..09370c250
--- /dev/null
+++ b/3492/CH3/EX3.4/Ex3_4.sce
@@ -0,0 +1,12 @@
+clc
+//Chapter3
+//Ex_4
+//Given
+theta=15.2 // in degree
+d=0.234 // in nm
+V=100 //in V
+lambda=2*d*sind(theta) //Braggs condition
+disp(lambda,"Wavelength of electron in nm is")
+lambda=1.226/sqrt(V) //debroglie wavelength in nm
+disp(lambda,"de Broglie Wavelength of electron in nm is")
+disp("de Broglie Wavelength is in excellent agreement with that determined from Braggs condition")
diff --git a/3492/CH3/EX3.5/Ex3_5.sce b/3492/CH3/EX3.5/Ex3_5.sce
new file mode 100644
index 000000000..d0a4d602c
--- /dev/null
+++ b/3492/CH3/EX3.5/Ex3_5.sce
@@ -0,0 +1,22 @@
+clc
+//Chapter3
+//Ex_5
+//Given
+h=6.6*10^-34 //in J s
+c=3*10^8 //in m/s
+n=1
+m=9.1*10^-31 //in Kg
+a=0.1*10^-9 //in m
+e=1.6*10^-19 //in coulombs
+E1=(h^2*n^2)/(8*m*a^2)
+E1=E1/e //in eV
+disp(E1,"Ground Energy of the electron in J is")
+//part(b)
+n=3
+E3=E1*n^2
+disp(E3,"Energy required to put the electrons in third energy level in eV is")
+E=E3-E1
+disp(E,"Energy required to take the electron from E1 to E3 in eV is ")
+lambda=h*c/(E*e)
+disp(lambda,"wavelength of the required photon in nm is")
+disp( "which is an X-ray photon")
diff --git a/3492/CH3/EX3.6/Ex3_6.sce b/3492/CH3/EX3.6/Ex3_6.sce
new file mode 100644
index 000000000..fa3c5219e
--- /dev/null
+++ b/3492/CH3/EX3.6/Ex3_6.sce
@@ -0,0 +1,19 @@
+clc
+//Chapter3
+//Ex_6
+//Given
+h=6.6*10^-34 //in J s
+c=3*10^8 //in m/s
+n=1
+m=0.1 //in Kg
+a=1 //in m
+E1=(h^2*n^2)/(8*m*a^2)
+v=sqrt(2*E1/m)
+disp(v,"Minimum speed of the object in m/s")
+//calculation of quantum number n
+v=1 //in m/s
+E_n=m*v^2/2
+n=sqrt((8*m*a^2*E_n)/h^2)
+disp(n,"Quantum number if the object is moving with a minimum speed of 1m/s is")
+delta_E=(h^2/(8*m*a^2))*(2*n+1) //delta_E=E_n+1-En
+disp(delta_E,"Separation of energy levels of the object moving with speed of 1 m/s in Joules is ")
diff --git a/3492/CH3/EX3.8/Ex3_8.sce b/3492/CH3/EX3.8/Ex3_8.sce
new file mode 100644
index 000000000..dbbad8605
--- /dev/null
+++ b/3492/CH3/EX3.8/Ex3_8.sce
@@ -0,0 +1,12 @@
+clc
+//Chapter3
+//Ex_8
+//Given
+h_bar=1.054*10^-34 // in J s
+delta_x=0.1*10^-9 //in m
+m_e=9.1*10^-31 //in Kg
+delta_Px=h_bar/delta_x
+disp(delta_Px,"uncertainity in momemtum in Kg m/s is")
+delta_v=delta_Px/m_e
+KE=delta_Px^2/(2*m_e)
+disp(KE,"Uncertainity in Kinetic Energy in J is")
diff --git a/3492/CH3/EX3.9/Ex3_9.sce b/3492/CH3/EX3.9/Ex3_9.sce
new file mode 100644
index 000000000..7063af4b3
--- /dev/null
+++ b/3492/CH3/EX3.9/Ex3_9.sce
@@ -0,0 +1,10 @@
+clc
+//Chapter3
+//Ex_9
+//Given
+h_bar=1.054*10^-34 // in J s
+delta_x=1 //in m
+m=0.1 //in Kg
+delta_Px=h_bar/delta_x
+delta_v=delta_Px/m
+disp(delta_v,"minimum uncetainity in the velocity in m/s is")
diff --git a/3492/CH4/EX4.10/Ex4_10.sce b/3492/CH4/EX4.10/Ex4_10.sce
new file mode 100644
index 000000000..31dd49b8b
--- /dev/null
+++ b/3492/CH4/EX4.10/Ex4_10.sce
@@ -0,0 +1,11 @@
+clc
+//Chapter4
+//Ex_10
+//Given
+e=1.6*10^-19 // in coulombs
+me=9.1*10^-31 //in Kg
+u_d=43*10^-4 // in cm2/V/s
+v_e=1.22*10^6 // in m/s
+T=u_d*me/e
+l_e=v_e*T
+disp(l_e,"Mean free path of electrons in meters is")
diff --git a/3492/CH4/EX4.11/Ex4_11.sce b/3492/CH4/EX4.11/Ex4_11.sce
new file mode 100644
index 000000000..a7afc3eab
--- /dev/null
+++ b/3492/CH4/EX4.11/Ex4_11.sce
@@ -0,0 +1,18 @@
+clc
+//Chapter4
+//Ex_11
+//Given
+e=1.6*10^-19 // in coulombs
+T=373 // in kelvin
+To=273 // in kelvin
+k=1.38*10^-23 //in m2 kg /k/s2
+//from table 4.3
+E_FAO= 11.6 //in eV
+E_FAO=E_FAO*e //in J
+x_A=2.78
+E_FBO= 7.01 //in eV
+E_FBO=E_FBO*e //in J
+x_B=-1.79
+//Mott jones Equation
+V_AB=(-%pi^2*k^2/(6*e))*((x_A/E_FAO)-(x_B/E_FBO))*(T^2-To^2)
+disp(V_AB*10^6,"EMF in micro volts available from Al and Cu thermocouple with the given respective temperatures at the junctions is")
diff --git a/3492/CH4/EX4.13/Ex4_13.sce b/3492/CH4/EX4.13/Ex4_13.sce
new file mode 100644
index 000000000..a93421b37
--- /dev/null
+++ b/3492/CH4/EX4.13/Ex4_13.sce
@@ -0,0 +1,18 @@
+clc
+//Chapter4
+//Ex_13
+//Given
+phi=2.6 //in eV
+e=1.6*10^-19 //in coulombs
+phi=phi*e //in Joules
+Be=3*10^4 //schottky coefficient in A/m2/K2
+T=1600 //in degree celcius
+T=T+273 //in Kelvin
+k=1.38*10^-23 //m2 kg s-2 K-1
+d=2*10^-3 //in m
+l=4*10^-2 //in in m
+//Richardson-Dushman Equation
+J=Be*T^2*exp(-phi/(k*T))
+A=%pi*d*l
+I=J*A
+disp(I,"Saturation current in Amperes if the tube is operated at 1873 kelvin is")
diff --git a/3492/CH4/EX4.14/Ex4_14.sce b/3492/CH4/EX4.14/Ex4_14.sce
new file mode 100644
index 000000000..d114edce1
--- /dev/null
+++ b/3492/CH4/EX4.14/Ex4_14.sce
@@ -0,0 +1,23 @@
+clc
+//Chapter4
+//Ex_14
+//Given
+phi=2.6 //in eV
+e=1.6*10^-19 //in coulombs
+phi=phi*e //in Joules
+x=1*10^-3 // distance in m
+V=4*10^3 // in Volts
+Be=3*10^4 //schottky coefficient in A/m2/K2
+T=1600 //in degree celcius
+T=T+273 //in Kelvin
+k=1.38*10^-23 //m2 kg s-2 K-1
+d=2*10^-3 //in m
+l=4*10^-2 //in in m
+A=2.5*10^-4 //in m2 //from example 12
+E=V/x
+beta_s=3.79*10^-5 //in eV/sqrt(V/m)
+phi_eff=phi-beta_s*sqrt(E)
+Io=A*Be*T^2
+I1=Io*exp(-phi/(k*T))
+I2=I1*exp((phi-phi_eff)*e/(k*T)) //converting phi value from joules to eV
+disp(I2,"Theoretical saturation current in Amperes is")
diff --git a/3492/CH4/EX4.5/EX4_5.sce b/3492/CH4/EX4.5/EX4_5.sce
new file mode 100644
index 000000000..5383d2cac
--- /dev/null
+++ b/3492/CH4/EX4.5/EX4_5.sce
@@ -0,0 +1,11 @@
+clc
+//Chapter4
+//Ex_5
+//Given
+E_FO=7 //in eV
+e=1.6*10^-19 // in coulombs
+E_FO=E_FO*e //in Joules
+me=9.1*10^-31 //in Kg
+v_f=sqrt(2*E_FO/me)
+disp(v_f,"Speed of the conduction electrons in m/s is")
+
diff --git a/3492/CH4/EX4.6/Ex4_6.sce b/3492/CH4/EX4.6/Ex4_6.sce
new file mode 100644
index 000000000..bacdc476d
--- /dev/null
+++ b/3492/CH4/EX4.6/Ex4_6.sce
@@ -0,0 +1,12 @@
+clc
+//Chapter4
+//Ex_6
+//Given
+e=1.6*10^-19 // in coulombs
+Eg=1.1 //in eV
+Eg=Eg*e // in Joules
+h=6.6*10^-34 //in Js
+c=3*10^8 // in m/s
+lambda=h*c/Eg
+disp(lambda*10^6,"Wavelength of light that can be absorbed by an Si photodetector at Eg=1.1 eV in micro meter is")
+disp("Hence the light of wavelength 1.31 micro meter and 1.55 micro meter will not be absorbed by Si and thus cannot be detected by detector")
diff --git a/3492/CH4/EX4.7/Ex4_7.sce b/3492/CH4/EX4.7/Ex4_7.sce
new file mode 100644
index 000000000..a1d87e41c
--- /dev/null
+++ b/3492/CH4/EX4.7/Ex4_7.sce
@@ -0,0 +1,29 @@
+clc
+//Chapter4
+//Ex_7
+//Given
+e=1.6*10^-19 // in coulombs
+h=6.626*10^-34 //in Js
+me=9.1*10^-31 //in Kg
+//let x=k*T
+x=0.026 // in eV
+E=5 //in ev
+E=E*e // in Joules
+g_E=(8*%pi*sqrt(2))*(me/h^2)^(3/2)*sqrt(E)// in J^-1*m^-3
+//convesion of units
+g_E=g_E*10^-6*e //in eV^-1 cm^-3
+disp(g_E,"density of states at the center of the band in cm^-3*J^-1 is")
+//part(b)
+n_E=g_E*x // in cm^-3
+disp(n_E," No.of states per unit volume within kT about the center in cm^-3 is")
+//part(c)
+E=0.026 //in eV
+E=E*e // in joules
+g_E=(8*%pi*sqrt(2))*(me/h^2)^(3/2)*sqrt(E)// in J^-1*m^-3
+//convesion of units
+g_E=g_E*10^-6*e //in eV^-1 cm^-3
+disp(g_E,"density of states at at kT above the band in cm^-3*J^-1 is")
+//part(d)
+n_E=g_E*x // in cm^-3
+disp(n_E," No.of states per unit volume within kT about the center in cm^-3 is")
+//solved using the values taken from the solution of textbook
diff --git a/3492/CH4/EX4.8/Ex4_8.sce b/3492/CH4/EX4.8/Ex4_8.sce
new file mode 100644
index 000000000..a31f31f63
--- /dev/null
+++ b/3492/CH4/EX4.8/Ex4_8.sce
@@ -0,0 +1,18 @@
+clc
+//Chapter4
+//Ex_8
+//Given
+e=1.6*10^-19 // in coulombs
+h=6.626*10^-34 //in Js
+me=9.1*10^-31 //in Kg
+d=10.5 // in g/cm
+Mat=107.9 //g/mol
+NA=6.023*10^23 // mol^-1
+E_ctr=5 //in ev
+E_ctr=E_ctr*e // in Joules
+S_band=2*(16*%pi*sqrt(2)/3)*(me/h^2)^(3/2)*(E_ctr)^(3/2)// in states m^-3
+//convesion of units
+S_band=S_band*10^-6 //in states cm^-3
+disp(S_band,"No. of states in the band in states cm^-3 is")
+n_Ag=d*NA/Mat
+disp(n_Ag,"No.of atoms per unit volume in silver in atoms per cm3 is")
diff --git a/3492/CH4/EX4.9/Ex4_9.sce b/3492/CH4/EX4.9/Ex4_9.sce
new file mode 100644
index 000000000..76dafe535
--- /dev/null
+++ b/3492/CH4/EX4.9/Ex4_9.sce
@@ -0,0 +1,18 @@
+clc
+//Chapter4
+//Ex_9
+//Given
+e=1.6*10^-19 // in coulombs
+h=6.626*10^-34 //in Js
+me=9.1*10^-31 //in Kg
+d=8.96 // in g/cm
+Mat=63.5 // g/ mol
+NA=6.023*10^23 // mol^-1
+n=d*NA/Mat //in cm^-3
+n=n*10^6 //in m^-3
+E_FO=(h^2/(8*me))*(3*n/%pi)^(2/3) //in J
+E_FO=E_FO/e //in eV
+disp(E_FO,"Fermi energy at 0 Kelvin in eV is")
+E_FO=(h^2/(8*me))*(3*n/%pi)^(2/3) //in J
+v_e=sqrt(6*E_FO/(5*me))
+disp(v_e,"Average speed of conduction electrons in m/s is")
diff --git a/3492/CH5/EX5.1/Ex5_1.sce b/3492/CH5/EX5.1/Ex5_1.sce
new file mode 100644
index 000000000..972a80a68
--- /dev/null
+++ b/3492/CH5/EX5.1/Ex5_1.sce
@@ -0,0 +1,23 @@
+clc
+//Chapter5
+//Ex_1
+//Given
+e=1.6*10^-19 // in coulombs
+h=6.6*10^-34 //in J s
+m=9.1*10^-31 //in Kg
+me=1.08*m
+mh=0.56*m
+T=300 //in Kelvin
+Eg=1.10 // in eV
+ue=1350//in cm2/V/s
+uh=450//in cm2/V/s
+k=1.38*10^-23 //m2 kg s-2 K-1
+Nc=2*((2*%pi*me*k*T)/h^2)^(3/2) //in m^-3
+Nc=Nc*10^-6 //in cm^-3
+Nv=2*((2*%pi*mh*k*T)/h^2)^(3/2) //in m^-3
+Nv=Nv*10^-6 //in cm^-3
+ni=sqrt(Nc*Nv)*exp(-Eg*e/(2*k*T))
+disp(ni,"Intrinsic concentration of Si in cm^-3 is")
+sigma=e*ni*(ue+uh)
+p=1/sigma
+disp(p,"Intrinsic resistivity of Si in ohm cm is")
diff --git a/3492/CH5/EX5.11/Ex5_11.sce b/3492/CH5/EX5.11/Ex5_11.sce
new file mode 100644
index 000000000..98d48bd93
--- /dev/null
+++ b/3492/CH5/EX5.11/Ex5_11.sce
@@ -0,0 +1,32 @@
+clc
+//Chapter5
+//Ex_11
+//Given
+//part(a)
+h=6.63*10^-34 //in Js
+c=3*10^8 // in m/s
+e=1.6*10^-19 // in coulombs
+ue=0.034 //in m2/V/s
+uh=0.0018 //in m2/V/s
+t=1*10^-3 // in seconds
+L=1*10^-3 //in m
+D=0.1*10^-3 //in m
+W=1*10^-3 //in m
+I=1// mW/cm^2
+I=I*10^-3*10^4 // conversion of units to W/m^2
+n=1 //quantum efficiency
+lambda=450*10^-9 // in m
+V=50 // in volts
+//part(a)
+A=L*W //in m3
+EHP_ph=(A*n*I*lambda)/(h*c)
+disp(EHP_ph,"No.of EHP/s generated per second is")
+//part(b)
+delta_sigma=e*n*I*lambda*t*(ue+uh)/(h*c*D)
+disp(delta_sigma,"Photo conductivity of the sample in ohm^-1 m^-1 is")
+//part(c)
+A=0.1*10^-6 //m2
+E=V/W
+delta_J=E*delta_sigma
+delta_I=A*delta_J
+disp(delta_I*10^3,"Photocurrent produced in mA is")
diff --git a/3492/CH5/EX5.13/Ex5_13.sce b/3492/CH5/EX5.13/Ex5_13.sce
new file mode 100644
index 000000000..c820fa507
--- /dev/null
+++ b/3492/CH5/EX5.13/Ex5_13.sce
@@ -0,0 +1,12 @@
+clc
+//Chapter5
+//Ex_13
+//Given
+e=1.6*10^-19 // in coulombs
+T=300//in kelvin
+ue=1300 //in cm2/V/s
+//V=k*T/e
+V=0.0259 //thermal voltage in Volts
+//D=ue*k*T/e
+D=ue*V
+disp(D,"Diffusion coefficient of electrons at room temperature in cm2/s is")
diff --git a/3492/CH5/EX5.17/Ex5_17.sce b/3492/CH5/EX5.17/Ex5_17.sce
new file mode 100644
index 000000000..9ef900965
--- /dev/null
+++ b/3492/CH5/EX5.17/Ex5_17.sce
@@ -0,0 +1,12 @@
+clc
+//Chapter5
+//Ex_17
+//Given
+Eg=1.42 //in eV
+//letE=hc/lambda=hf
+E=1.96 //in eV
+P_L=50 //in mW
+kT=0.0259 // in eV
+delta_E=E-(Eg+(3/2)*kT)
+P_H=(P_L/(E))*delta_E
+disp(P_H,"Amount of power dissipated as heat in mW is")
diff --git a/3492/CH5/EX5.18/Ex5_18.sce b/3492/CH5/EX5.18/Ex5_18.sce
new file mode 100644
index 000000000..da69b5af2
--- /dev/null
+++ b/3492/CH5/EX5.18/Ex5_18.sce
@@ -0,0 +1,23 @@
+clc
+//Chapter5
+//Ex_18
+//Given
+phi_m=4.28 //in eV
+e=1.6*10^-19 // in coulombs
+X=4.01 //in eV
+kT=0.026 // in eV
+Vf=0.1// in V
+T=300//in kelvin
+Be=30 //A/K2/cm2
+A=0.01 //cm2
+//part(a)
+phi_B=phi_m-X
+disp(phi_B,"Theoretical barrier height in eV")
+//part(b)
+phi_B=0.5 //in eV
+Io=A*Be*T^2*exp(-phi_B/kT)
+disp(Io*10^6,"Saturation current in micro amperes is")
+//let/E=e*Vf //in eV
+E=0.1 //in eV
+If=Io*(exp((E/kT))-1)
+disp(If*10^3,"Forward current in milli amperes is")
diff --git a/3492/CH5/EX5.2/Ex5_2.sce b/3492/CH5/EX5.2/Ex5_2.sce
new file mode 100644
index 000000000..39b28be48
--- /dev/null
+++ b/3492/CH5/EX5.2/Ex5_2.sce
@@ -0,0 +1,10 @@
+clc
+//Chapter5
+//Ex_2
+//Given
+T=300//in kelvin
+k=1.38*10^-23 // in m2 kg s-2 K-1
+me=9.1*10^-31 // in Kg
+m=0.26*me
+Ve=sqrt(3*k*T/m)
+disp(Ve,"Mean speed of electrons in conduction band in m/s is")
diff --git a/3492/CH5/EX5.3/Ex5_3.sce b/3492/CH5/EX5.3/Ex5_3.sce
new file mode 100644
index 000000000..129a3a47c
--- /dev/null
+++ b/3492/CH5/EX5.3/Ex5_3.sce
@@ -0,0 +1,21 @@
+clc
+//Chapter5
+//Ex_3
+//Given
+e=1.6*10^-19 // in coulombs
+ue=1350//in cm2/V/s
+uh=450//in cm2/V/s
+ni=1.45*10^10 //in cm^-3
+L=1 //in cm
+A=1 //in cm2
+N_Si=5*10^22 //in cm^-3
+sigma=e*ni*(ue+uh)
+R=L/(sigma*A)
+disp(R,"Resistance of a pure Silicon crystal in ohms is")
+Nd=N_Si/10^9
+n=Nd //at room temperature
+p=ni^2/Nd
+sigma=e*n*ue
+R=L/(sigma*A)
+disp(R,"Resistance in ohms of Silicon crystal when dopped with Arsenic with 1 in 10^9 is")
+
diff --git a/3492/CH5/EX5.4/Ex5_4.sce b/3492/CH5/EX5.4/Ex5_4.sce
new file mode 100644
index 000000000..db0a62857
--- /dev/null
+++ b/3492/CH5/EX5.4/Ex5_4.sce
@@ -0,0 +1,10 @@
+clc
+//Chapter5
+//Ex_4
+//Given
+Na=10^17 //acceptor atoms /cm3
+Nd=10^16 //donor atoms /cm3
+p=Na-Nd // in cm^-3
+ni=1.45*10^10 //in cm^-3
+n=ni^2/p
+disp(n,"Electron concentration in cm^-3")
diff --git a/3492/CH5/EX5.5/Ex5_5.sce b/3492/CH5/EX5.5/Ex5_5.sce
new file mode 100644
index 000000000..323882548
--- /dev/null
+++ b/3492/CH5/EX5.5/Ex5_5.sce
@@ -0,0 +1,24 @@
+clc
+//Chapter5
+//Ex_5
+//Given
+Na=2*10^17 //acceptor atoms /cm3
+Nd=10^16 //acceptor atoms /cm3
+ni=1.45*10^10 //in cm^-3
+K=0.0259 // in eV
+//since Nd>>ni
+n=Nd
+//let EFn-EFi=E
+E=K*log(Nd/ni)
+disp(E,"Position of the fermi energy w.r.t fermi energy in intrinsic Si in eV is")
+//for intrinsic Si
+//ni=Nc*exp(-(Ec-E_Fi)/(k*T))
+//for doped Si
+//Nd=Nc*exp(-(Ec-E_Fn)/(k*T))
+//let x=Nd/ni
+//let K=k*T
+p=Na-Nd
+//let E=EFp-EFi
+//let n=p/ni
+E=-K*log(p/ni)
+disp(E,"Position of the fermi energy w.r.t fermi energy in n-type case in eV is")
diff --git a/3492/CH5/EX5.7/Ex5_7.sce b/3492/CH5/EX5.7/Ex5_7.sce
new file mode 100644
index 000000000..549cdc666
--- /dev/null
+++ b/3492/CH5/EX5.7/Ex5_7.sce
@@ -0,0 +1,19 @@
+clc
+//Chapter5
+//Ex_7
+//Given
+Nd=10^15 //in cm^-3
+Nc=2.8*10^19 //in cm^-3
+Ti=556 // in Kelvin
+k=8.62*10^-5 //in eV/K
+delta_E=0.045 //in eV
+T=300 //in kelvin
+//part(a)
+disp("From fig 5.16 the estimated temperature above which the si sample behaves as if intrinsic is 556 Kelvin")
+//part(b)
+Ts=delta_E/(k*log(Nc/(2*Nd)))
+Nc_Ts=Nc*(Ts/T)^(3/2)
+disp(Ts,"Lowest temperature in kelvin is")
+//the improved temperature
+Ts=delta_E/(k*log(Nc_Ts/(2*Nd)))
+printf("Extrinsic range of Si is %f K to 556 K",Ts)
diff --git a/3492/CH5/EX5.9/Ex5_9.sce b/3492/CH5/EX5.9/Ex5_9.sce
new file mode 100644
index 000000000..952fd7528
--- /dev/null
+++ b/3492/CH5/EX5.9/Ex5_9.sce
@@ -0,0 +1,19 @@
+clc
+//Chapter5
+//Ex_9
+//Given
+e=1.6*10^-19 // in coulombs
+Nd=10^17 //in cm^-3
+Na=9*10^16 //in cm^-3
+//part(a)
+ue1=800 // at 300 kelvin ue in cm2/V/s
+sigma1=e*Nd*ue1
+ue2=420 // at 400 kelvin ue in cm2/V/s
+sigma2=e*Nd*ue2
+disp(sigma2,sigma1,"when Si sample is doped with 10^17 arsenic atoms/cm3, the conductivity of the sample at 300K and 400K in ohm^-1*cm^-1 is")
+//part(b)
+ue1=600 // at 300 kelvin ue in cm2/V/s
+sigma1=e*(Nd-Na)*ue1
+ue2=400 // at 400 kelvin ue in cm2/V/s
+sigma2=e*(Nd-Na)*ue2
+disp(sigma2,sigma1,"when n-type Si is further doped with 9*10^16 boron atoms /cm3, the conductivity of the sample at 300K and 400K in ohm^-1*cm^-1 is")
diff --git a/3492/CH6/EX6.1/Ex6_1.sce b/3492/CH6/EX6.1/Ex6_1.sce
new file mode 100644
index 000000000..e63cba003
--- /dev/null
+++ b/3492/CH6/EX6.1/Ex6_1.sce
@@ -0,0 +1,18 @@
+clc
+//Chapter6
+//Ex_1
+//Given
+//let K=kT/e
+K=0.0259 //in V
+Nd=10^17 //in cm^-3
+Na=10^16 //in cm^-3
+ni_Si=1.45*10^10 //in cm^-3
+ni_Ge=2.40*10^13 //in cm^-3
+ni_GaAs=1.79*10^6 //in cm^-3
+//Vo=(k*T/e)*log(Nd*Na/ni^2)
+Vo_Si=(K)*log(Nd*Na/ni_Si^2)
+disp(Vo_Si,"Built in potential for Si in Volts is")
+Vo_Ge=(K)*log(Nd*Na/ni_Ge^2)
+disp(Vo_Ge,"Built in potential for Ge in Volts is")
+Vo_GaAs=(K)*log(Nd*Na/ni_GaAs^2)
+disp(Vo_GaAs,"Built in potential for GaAs in Volts is")
diff --git a/3492/CH6/EX6.10/Ex6_10.sce b/3492/CH6/EX6.10/Ex6_10.sce
new file mode 100644
index 000000000..e83ed1a08
--- /dev/null
+++ b/3492/CH6/EX6.10/Ex6_10.sce
@@ -0,0 +1,12 @@
+clc
+//Chapter6
+//Ex_10
+//Given
+V_GS=-1.5 //in Volts
+V_GS_off=-5 //in Volts
+I_DSS=10*10^-3 // in A
+R_D=2000 // in ohms
+I_DS=I_DSS*(1-(V_GS/V_GS_off))^2 // in A
+gm=-2*sqrt(I_DSS*I_DS)/V_GS_off
+Av=-gm*R_D
+disp(Av,"voltage amplification for small signal is")
diff --git a/3492/CH6/EX6.11/Ex6_11.sce b/3492/CH6/EX6.11/Ex6_11.sce
new file mode 100644
index 000000000..efa618f69
--- /dev/null
+++ b/3492/CH6/EX6.11/Ex6_11.sce
@@ -0,0 +1,18 @@
+clc
+//Chapter6
+//Ex_11
+//Given
+Z=50*10^-6 //in m
+L=10*10^-6 //in m
+t_ox=450*10^-10 //in m
+V_GS=8//in V
+V_th=4//in V
+V_DS=20//in V
+lambda=0.01
+ue=750*10^-4 //in m2/V/s
+epsilon_r=3.9
+epsilon_o=8.85*10^-12//F/m2
+epsilon=epsilon_r*epsilon_o
+K=(Z*ue*epsilon)/(2*L*t_ox)
+I_DS=K*(V_GS-V_th)^2*(1+lambda*V_DS)
+disp(I_DS*10^3,"drain current in mA is")
diff --git a/3492/CH6/EX6.13/Ex6_13.sce b/3492/CH6/EX6.13/Ex6_13.sce
new file mode 100644
index 000000000..377238c71
--- /dev/null
+++ b/3492/CH6/EX6.13/Ex6_13.sce
@@ -0,0 +1,10 @@
+clc
+//Chapter6
+//Ex_13
+//Given
+e=1.6*10^-19 // in coulombs
+I=10^-3 //in A
+Th=10^-6 //in s
+B=1/Th //in Hz
+i_sn=sqrt(2*e*I*B)
+disp(i_sn,"shot noise current in amperes is")
diff --git a/3492/CH6/EX6.2/Ex6_2.sce b/3492/CH6/EX6.2/Ex6_2.sce
new file mode 100644
index 000000000..9206a2729
--- /dev/null
+++ b/3492/CH6/EX6.2/Ex6_2.sce
@@ -0,0 +1,19 @@
+clc
+//Chapter6
+//Ex_2
+//Given
+//let K=kT/e
+K=0.0259 //in V
+Na=10^18 //in cm^-3
+Nd=10^16 //in cm^-3
+e=1.6*10^-19 // in coulombs
+Eo=8.85*10^-12 //in m-3 kg-1 s4 A2
+Er=11.9
+E=Eo*Er
+ni=1.45*10^10 //in cm^-3
+//Vo=(k*T/e)*log(Nd*Na/ni^2)
+Vo=(K)*log(Nd*Na/ni^2)
+disp(Vo)
+Nd=Nd*10^6 //in m^-3
+Wo=sqrt(2*E*Vo/(e*Nd))
+disp(Wo*10^6,"Depletion width in micro meters is")
diff --git a/3492/CH6/EX6.3/Ex6_3.sce b/3492/CH6/EX6.3/Ex6_3.sce
new file mode 100644
index 000000000..83152b562
--- /dev/null
+++ b/3492/CH6/EX6.3/Ex6_3.sce
@@ -0,0 +1,52 @@
+clc
+//Chapter6
+//Ex_3
+//Given
+//part(a)
+//let K=k*T/e
+K=0.0259 // in V
+Te=5*10^-9 // in s
+Th=417*10^-9 // in s
+ue=120 //in cm2/V/s
+uh=440 //in cm2/V/s
+Na=5*10^18 // in cm^-3
+Nd=10^16 //in cm^-3
+T1=300 //in kelvin
+T2=373 //in kelvin
+Tg=10^-6 //in seconds
+Vr=5 //in volts
+ni_300=1.45*10^10 //in cm^-3 at 300K
+ni_373=1.2*10^12 //in cm^-3 at 373K
+A=0.01 //in cm2
+e=1.6*10^-19 // in coulombs
+epsilon_o=8.85*10^-12 //in F/m
+epsilon_r=11.9
+V=0.6 //in v
+//De=k*T*ue/e
+De=K*ue
+Dh=K*uh
+Le=sqrt(De*Te)
+Lh=sqrt(Dh*Th)
+disp(Le,"Diffusion length of electrons in cm is")
+disp(Lh,"Diffusion length of holes in cm is")
+//part(b)
+//Vo=(k*T/e)*log(Nd*Na/ni^2)
+Vo=K*log(Nd*Na/ni_300^2)
+disp(Vo,"Built-in potential in volts is")
+//part(C)
+Iso_300=A*e*ni_300^2*Dh/(Lh*Nd)
+//I=Iso*exp(eV/kT)
+I=Iso_300*exp(V/K)
+disp(I,"Current when there is a forward bias of 0.6 V at 300K in Amperes is")
+//part(d)
+Iso_373=Iso_300*(ni_373/ni_300)^2
+I=Iso_373*exp((V/K)*(T1/T2))
+disp(I,"Current when there is a forward bias of 0.6 V at 373K in Amperes is")
+//part(e)
+Nd=Nd*10^6 //in m^-3
+epsilon=epsilon_o*epsilon_r
+W=sqrt(2*epsilon*(Vo+Vr)/(e*Nd))
+W=W*10^2 //in cm
+ni=1.45*10^10 //in cm^-3
+I_gen=e*A*W*ni/Tg
+disp(I_gen,"Thermal generation current in Amperes is")
diff --git a/3492/CH6/EX6.5/Ex6_5.sce b/3492/CH6/EX6.5/Ex6_5.sce
new file mode 100644
index 000000000..3c4ba17b9
--- /dev/null
+++ b/3492/CH6/EX6.5/Ex6_5.sce
@@ -0,0 +1,25 @@
+clc
+//Chapter6
+//Ex_5
+//Given
+A=10^-6 //in m2
+Vo=0.856 //in V
+I=5*10^-3 // in Amperes
+Iso=0.176*10^-12 //in Amperes
+e=1.6*10^-19 // in coulombs
+Eo=8.85*10^-12 //in m-3 kg-1 s4 A2
+Er=11.9
+Th=417*10^-9 //in seconds
+Nd=10^22 //in m^-3
+//let K=kT/e
+K=0.0259 //in V
+//Vo=(k*T/e)*log(I/Iso)
+V=(K)*log(I/Iso)
+I=5 // in mA
+rd=25/I
+disp(rd,"Incremental diode resistance in ohms is")
+E=Eo*Er
+C_dep=A*sqrt((e*E*Nd)/(2*(Vo-V)))
+disp(C_dep,"Depletion capacitance of the diode in Farads")
+C_diff=Th*I/25
+disp(C_diff,"Incremental difusion coefficient in Farads is")
diff --git a/3492/CH6/EX6.6/Ex6_6.sce b/3492/CH6/EX6.6/Ex6_6.sce
new file mode 100644
index 000000000..defc6f603
--- /dev/null
+++ b/3492/CH6/EX6.6/Ex6_6.sce
@@ -0,0 +1,17 @@
+clc
+//Chapter6
+//Ex_6
+//Given
+e=1.6*10^-19 // in coulombs
+Nd=10^16 //in cm^-3
+Ebr=4*10^5//in V/cm
+epsilono=8.85*10^-12*10^-2 //in F/cm
+epsilonr=11.9
+epsilon=epsilono*epsilonr
+Vbr=epsilon*Ebr^2/(2*e*Nd)
+disp(Vbr,"Reverse break down voltage of the Si diode in Volts is")
+//part(b)
+Nd=10^17 //in cm^-3
+Ebr=6*10^5//in V/cm
+Vbr=epsilon*Ebr^2/(2*e*Nd)
+disp(Vbr,"Reverse break down voltage in Volts when phosphorous doping is incresed to 10^17 cm^-3 is")
diff --git a/3492/CH6/EX6.7/Ex6_7.sce b/3492/CH6/EX6.7/Ex6_7.sce
new file mode 100644
index 000000000..2b349db63
--- /dev/null
+++ b/3492/CH6/EX6.7/Ex6_7.sce
@@ -0,0 +1,43 @@
+clc
+//Chapter6
+//Ex_7
+//Given
+//part(a)
+Th=250*10^-9 //in seconds
+A=0.02*10^-2 //in cm2
+Av=10 //voltage gain
+ni=1.45*10^10 //in cm^-3
+Nd=2*10^16 //in cm^-3
+W_B=2*10^-4 //in cm
+uh=410 //in cm2/V/s
+I_E=2.5*10^-3 //in Amperes
+//let K=kT/e
+K=0.0259 //in V
+//Dh=(kT/e)*uh
+Dh=K*uh
+Tt=W_B^2/(2*Dh)
+e=1.6*10^-19 // in coulombs
+alpha=1-(Tt/Th)
+disp(alpha,"CB current transfer ratio is")
+funcprot(0)
+beta=alpha/(1-alpha)
+disp(beta,"current gain is")
+//part(c)
+I_EO=e*A*Dh*ni^2/(Nd*W_B)
+//V_EB=(k*T/e)*log(I_E/I_EO)
+V_EB=(K)*log(I_E/I_EO)
+disp(V_EB,"V_EB in volts is")
+//re=(k*T/e)/IE=25/IE(mA)
+I_E=2.5 //in mA
+re=25/I_E
+disp(re,"small signal input resistance in ohms is")
+//part(d)
+R_C=Av*re
+disp(R_C,"R_C in ohms is")
+//part(e)
+I_E=2.5*10^-3 //in Amperes
+I_B=I_E*(1-alpha)
+disp(I_B*10^6,"base current in micro amperes is")
+//part(f)
+f=1/Tt
+disp(f*10^-6,"upper frequency range limit in MHz is")
diff --git a/3492/CH6/EX6.8/Ex6_8.sce b/3492/CH6/EX6.8/Ex6_8.sce
new file mode 100644
index 000000000..06d494444
--- /dev/null
+++ b/3492/CH6/EX6.8/Ex6_8.sce
@@ -0,0 +1,23 @@
+clc
+//Chapter6
+//Ex_8
+//Given
+//part(c)
+Nd=2*10^16 //in cm^-3
+Na=10^19 //in cm^-3
+W_B=2*10^-4 //in cm
+W_E=2*10^-4 //in cm
+ue=110 //in cm2/V/s
+uh=410 //in cm2/V/s
+Th=250*10^-9 //in seconds
+//let K=kT/e
+K=0.0259 //in V
+//Dh=(kT/e)*uh
+Dh=K*uh
+Tt=W_B^2/(2*Dh)
+gamma=1/(1+((Nd*W_B*ue)/(Na*W_E*uh)))
+disp(gamma,"Injection frequency is")
+alpha=gamma*(1-(Tt/Th))
+disp(alpha,"Modified alpha is")
+beta=alpha/(1-alpha)
+disp(beta,"modified current gain is")
diff --git a/3492/CH6/EX6.9/Ex6_9.sce b/3492/CH6/EX6.9/Ex6_9.sce
new file mode 100644
index 000000000..bcdc6a4e1
--- /dev/null
+++ b/3492/CH6/EX6.9/Ex6_9.sce
@@ -0,0 +1,24 @@
+clc
+//Chapter6
+//Ex_9
+//Given
+//rms output voltage
+Ic=2.5 // in mA
+Rc=1000 //in ohms
+beta=100
+vs=1//in mV
+Rs=50 // in ohms
+r_be=beta*25/Ic //Ic in mA
+gm=Ic/25 //Ic in mA
+//Av=v_ce/v_be=gm*Rc
+Av=gm*Rc
+v_be=vs*(r_be)/(r_be+Rs)//in mV
+v_ce=Av*v_be
+disp(v_ce,"rms output voltage in mV is")
+v_be=v_be*10^-3 //in volts
+Ap=beta*Av
+P_in=v_be^2/r_be
+disp(P_in*10^9,"Input power in watts is")
+P_out=P_in*Ap
+disp(P_out*10^6,"output power in watts is")
+
diff --git a/3492/CH7/EX7.1/Ex7_1.sce b/3492/CH7/EX7.1/Ex7_1.sce
new file mode 100644
index 000000000..45201620c
--- /dev/null
+++ b/3492/CH7/EX7.1/Ex7_1.sce
@@ -0,0 +1,16 @@
+clc
+//Chapter7
+//Ex_1
+//Given
+NA=6.023*10^23 // in mol^-1
+d=1.8 //g/cm3
+Mat=39.95 //in mol^-1
+epsilon_o=8.85*10^-12//F/m2
+alpha_e=1.7*10^-40 //F*m2
+N=NA*d/Mat //in cm^-3
+N=N*10^6 // in m^-3
+epsilon_r=1+(N*alpha_e/epsilon_o)
+disp(epsilon_r,"Dielectric constant of solid Ar is")
+//using clausius-mossotti equation
+epsilon_r=(1+(2*N*alpha_e/(3*epsilon_o)))/(1-(N*alpha_e/(3*epsilon_o)))
+disp(epsilon_r,"using clausius-mossotti equation, Dielectric constant of solid Ar is")
diff --git a/3492/CH7/EX7.10/Ex7_10.sce b/3492/CH7/EX7.10/Ex7_10.sce
new file mode 100644
index 000000000..12e2af405
--- /dev/null
+++ b/3492/CH7/EX7.10/Ex7_10.sce
@@ -0,0 +1,27 @@
+clc
+//Chapter7
+//Ex_10
+//Given
+//part(C)
+d=0.5 // cm
+a=d/2 //in cm
+t=0.5 // in cm
+Ebr_X=217 // in kV/cm from table 7.5
+Ebr_S=158 // in kV/cm from table 7.5
+b=a+t
+Vbr_X=Ebr_X*a*log(b/a)
+disp(Vbr_X,"breakdown voltage of XLPE in kV is")
+Vbr_S=Ebr_S*a*log(b/a)
+disp(Vbr_S,"breakdown voltage of Silicone rubber in kV is")
+//part(d)
+//letE=epsiolon
+Er_X=2.3 // for XLPE
+Er_S=3.7 // for Silicone rubber
+//Eair_br=Ebr
+Eair_br_X=100 //in kV/cm
+Eair_br_S=100 //in kV/cm
+//Vair_br=Eair_br*a*log(b/a)/Er
+Vair_br_X=Eair_br_X*a*log(b/a)/Er_X
+disp(Vair_br_X,"Voltage for partial discharge in a microvoid for XLPE in kV is")
+Vair_br_S=Eair_br_S*a*log(b/a)/Er_S
+disp(Vair_br_S, "Voltage for partial discharge in a microvoid for Silicone rubber in kV is")
diff --git a/3492/CH7/EX7.11/Ex7_11.sce b/3492/CH7/EX7.11/Ex7_11.sce
new file mode 100644
index 000000000..1f68b36f3
--- /dev/null
+++ b/3492/CH7/EX7.11/Ex7_11.sce
@@ -0,0 +1,20 @@
+clc
+//Chapter7
+//Ex_11
+//Given
+//letE=epsiolon
+Er_100c=2.69
+Er_25c=2.60
+f=1*10^3 // in Hz
+w=2*%pi*f
+C_25c=560*10^-12 // in Farads
+//Gp=w*C*tan(delta)
+//let x=tan(delta)=0.002
+x=0.002
+Gp=w*C_25c*x
+disp(Gp,"Equivalent parallel conductance at 25 degree celcius in ohm^-1 is")
+//at 100 c
+x=0.01
+C_100c=C_25c*Er_100c/Er_25c
+Gp=w*C_100c*x
+disp(Gp,"Equivalent parallel conductance at 100 degree celcius in ohm^-1 is")
diff --git a/3492/CH7/EX7.12/Ex7_12.sce b/3492/CH7/EX7.12/Ex7_12.sce
new file mode 100644
index 000000000..e79c5df8c
--- /dev/null
+++ b/3492/CH7/EX7.12/Ex7_12.sce
@@ -0,0 +1,13 @@
+clc
+//Chapter7
+//Ex_12
+//Given
+Eo=8.85*10^-12//F/m2
+Er=1000
+D=3*10^-3 //in m
+V=5000 // in V
+d=200*10^-12 //in m/V
+L=10*10^-3 //in mm
+A=%pi*(D/2)^2
+F=Eo*Er*A*V/(d*L)
+disp(F,"Force required to spark the gap in Newton is")
diff --git a/3492/CH7/EX7.13/Ex7_13.sce b/3492/CH7/EX7.13/Ex7_13.sce
new file mode 100644
index 000000000..47c621cfd
--- /dev/null
+++ b/3492/CH7/EX7.13/Ex7_13.sce
@@ -0,0 +1,9 @@
+clc
+//Chapter7
+//Ex_13
+//Given
+fs=1 //in MHz
+k=0.1
+fa=fs/(sqrt(1-k^2))
+disp(fa,"fa value in MHz for given fs is")
+printf("thus fa-fs is only %f kHz, which means they are very close ",(fa-fs)*10^3)
diff --git a/3492/CH7/EX7.14/Ex7_14.sce b/3492/CH7/EX7.14/Ex7_14.sce
new file mode 100644
index 000000000..b9b5714b8
--- /dev/null
+++ b/3492/CH7/EX7.14/Ex7_14.sce
@@ -0,0 +1,16 @@
+clc
+//Chapter7
+//Ex_14
+//Given
+Co=5 //in pF
+fa=1.0025 //in MHz
+fs=1 //in MHz
+R=20 //in ohms
+C=Co*((fa/fs)^2-1)
+disp(C,"Capacitance value in the equivalent circuit of the crystal in pF is")
+L=1/(C*(2*%pi*fs)^2)
+disp(L,"Inductance value in the equivalent circuit of the crystal in Henry is")
+fs=fs*10^6 //in Hz
+C=C*10^-12 //in F
+Q=1/(2*%pi*fs*R*C)
+disp(Q,"Quality factor of the crystal is")
diff --git a/3492/CH7/EX7.15/Ex7_15.sce b/3492/CH7/EX7.15/Ex7_15.sce
new file mode 100644
index 000000000..66bf67400
--- /dev/null
+++ b/3492/CH7/EX7.15/Ex7_15.sce
@@ -0,0 +1,14 @@
+clc
+//Chapter7
+//Ex_15
+//Given
+P=380*10^-6 //in C/m2/K
+c=380//in J/Kg/K
+//let epsilon=E
+Eo=8.85*10^-12 //in F/m
+Er=290
+rho=7000//in Kg/m3
+delta_V=0.001 //in V
+delta_t=0.2 //in seconds
+I=(P/(rho*c*Eo*Er))^-1*delta_V/delta_t
+disp(I,"Minimum radiation intensity that can be measured in W/m2 is")
diff --git a/3492/CH7/EX7.2/Ex7_2.sce b/3492/CH7/EX7.2/Ex7_2.sce
new file mode 100644
index 000000000..68abb4f36
--- /dev/null
+++ b/3492/CH7/EX7.2/Ex7_2.sce
@@ -0,0 +1,21 @@
+clc
+//Chapter7
+//Ex_2
+//Given
+N=5*10^28 //in m^-3
+e=1.6*10^-19 // in coulombs
+Z=4
+me=9.1*10^-31 //in Kg
+epsilon_o=8.85*10^-12//F/m2
+epsilon_r=11.9
+//part(a)
+alpha_e=(3*epsilon_o/N)*((epsilon_r-1)/(epsilon_r+2))
+disp(alpha_e,"Electronic polarizability in F/m2")
+//part(b)
+//let x=E_loc/E
+x=(epsilon_r+2)/3
+printf("Local field is a factor of %f greater than applied field",x)
+//part(c)
+wo=sqrt(Z*e^2/(me*alpha_e))
+fo=wo/(2*%pi)
+disp(fo,"resonant frequency in Hz is")
diff --git a/3492/CH7/EX7.3/Ex7_3.sce b/3492/CH7/EX7.3/Ex7_3.sce
new file mode 100644
index 000000000..747f16746
--- /dev/null
+++ b/3492/CH7/EX7.3/Ex7_3.sce
@@ -0,0 +1,24 @@
+clc
+//Chapter7
+//Ex_3
+//Given
+//let epsilon=E
+Eo=8.85*10^-12 //in F/m
+Ni=1.43*10^28//in m^-3
+alpha_e_Cs=3.35*10^-40 //F m2
+alpha_e_Cl=3.40*10^-40 //F m2
+alpha_i=6*10^-40 //F m2
+//(Er-1)/(Er+2)=(1/(3*E0))*(Ni*alpha_e(Cs+)+Ni*alpha_e(Cl-)+Ni*alpha_i)
+//let x=(1/(3*E0))*(Ni*alpha_e(Cs+)+Ni*alpha_e(Cl-)+Ni*alpha_i)
+//after few mathematical steps we get
+//Er=(2*x+1)/(1-x)
+x=(1/(3*Eo))*(Ni*alpha_e_Cs+Ni*alpha_e_Cl+Ni*alpha_i)
+Er=(2*x+1)/(1-x)
+disp(Er,"Dielectric constant at low frequency is")
+//similarly
+//let y=(1/(3*E0))*(Ni*alpha_e(Cs+)+Ni*alpha_e(Cl-))
+//after few mathematical steps we get
+//Erop=(2*x+1)/(1-x)
+y=(1/(3*Eo))*(Ni*alpha_e_Cs+Ni*alpha_e_Cl)
+Erop=(2*y+1)/(1-y)
+disp(Erop,"Dielectric constant at optical frequency is")
diff --git a/3492/CH7/EX7.6/Ex7_6.sce b/3492/CH7/EX7.6/Ex7_6.sce
new file mode 100644
index 000000000..9758e81b7
--- /dev/null
+++ b/3492/CH7/EX7.6/Ex7_6.sce
@@ -0,0 +1,31 @@
+clc
+//Chapter7
+//Ex_6
+//Given
+//power dissipated at a given voltage per unit capacitance depends only on w*tan(delta)
+//at f=60 //in Hz.
+f=60 //in Hz.
+w=2*%pi*f
+//let x=tan(delta)
+x_PC=9*10^-4 //Ploycarbonate
+x_SR=2.25*10^-2 //Silicone rubber
+x_E=4.7*10^-2 //Epoxy with mineral filler
+p_PC=w*x_PC
+p_SR=w*x_SR
+p_E=w*x_E
+a=min(p_PC,p_SR,p_E)
+printf("The minimum w*tan(delta) is %f which corresponds to polycarbonate",a)
+disp("Hence the lowest power dissipation per unit capacitance at a given voltage corresponds to polycarbonate at 60Hz")
+//at f=1 //in MHz.
+f=10^6 //in Hz.
+w=2*%pi*f
+//let x=tan(delta)
+x_PC=1*10^-2 //Ploycarbonate
+x_SR=4*10^-3 //Silicone rubber
+x_E=3*10^-2 //Epoxy with mineral filler
+p_PC=w*x_PC
+p_SR=w*x_SR
+p_E=w*x_E
+a=min(p_PC,p_SR,p_E)
+printf("The minimum w*tan(delta) is %f which corresponds to Silicone rubber",a)
+disp("Hence, the lowest power dissipation per unit capacitance at a given voltage corresponds to Silicone rubber at 1MHz")
diff --git a/3492/CH7/EX7.7/Ex7_7.sce b/3492/CH7/EX7.7/Ex7_7.sce
new file mode 100644
index 000000000..20a8a0f8c
--- /dev/null
+++ b/3492/CH7/EX7.7/Ex7_7.sce
@@ -0,0 +1,32 @@
+clc
+//Chapter7
+//Ex_7
+//Given
+//at 60 Hz
+f=60 //Hz
+E=100*10^3*10^2 //in V/m
+//values taken from table 7.3
+epsilon_o=8.85*10^-12 //in F/m
+epsilon_r_HLPE=2.3
+epsilon_r_Alumina=8.5
+//let x=tan(delta)
+x_HLPE=3*10^-4
+x_Alumina=1*10^-3
+W_vol_HLPE=2*%pi*f*E^2*epsilon_o*epsilon_r_HLPE*x_HLPE //in W/m3
+W_vol_HLPE=W_vol_HLPE/10^3 //in mW/cm3
+disp(W_vol_HLPE,"Heat dissipated per unit volume of HLPE at 60 Hz in mW/cm3 is")
+W_vol_Alumina=2*%pi*f*E^2*epsilon_o*epsilon_r_Alumina*x_Alumina
+W_vol_Alumina=W_vol_Alumina/10^3 //in mW/cm3
+disp(W_vol_Alumina, "Heat dissipated per unit volume of Alumina at 60 Hz in mW/cm3 is")
+//at 1 MHz
+f=10^6 //Hz
+x_HLPE=4*10^-4
+x_Alumina=1*10^-3
+W_vol_HLPE=2*%pi*f*E^2*epsilon_o*epsilon_r_HLPE*x_HLPE //in W/m3
+W_vol_HLPE=W_vol_HLPE/10^6 //in W/cm3
+disp(W_vol_HLPE,"Heat dissipated per unit volume of HLPE at 1 MHz in mW/cm3 is")
+W_vol_Alumina=2*%pi*f*E^2*epsilon_o*epsilon_r_Alumina*x_Alumina
+W_vol_Alumina=W_vol_Alumina/10^6 //in W/cm3
+disp(W_vol_Alumina, "Heat dissipated per unit volume of Alumina at 1 MHz in mW/cm3 is")
+disp("The heats at 60Hz are small comparing to heats at 1MHz")
+
diff --git a/3492/CH8/EX8.3/Ex8_3.sce b/3492/CH8/EX8.3/Ex8_3.sce
new file mode 100644
index 000000000..38638b7c7
--- /dev/null
+++ b/3492/CH8/EX8.3/Ex8_3.sce
@@ -0,0 +1,13 @@
+clc
+//Chapter8
+//Ex_3
+//Given
+Mat=55.85*10^-3 //in Kg/mol
+NA=6.022*10^23 // in mol^-1
+p=7.86*10^3 //in kg/m3
+Msat=1.75*10^6 //in A/m
+funcprot(0)
+beta=9.27*10^-24 //in J/tesla
+n_at=p*NA/(Mat)
+x=Msat/(n_at*beta)
+printf("In the solid each Fe atom contributes only %f bohr magneton",x)
diff --git a/3492/CH8/EX8.5/Ex8_5.sce b/3492/CH8/EX8.5/Ex8_5.sce
new file mode 100644
index 000000000..173388b21
--- /dev/null
+++ b/3492/CH8/EX8.5/Ex8_5.sce
@@ -0,0 +1,13 @@
+clc
+//Chapter8
+//Ex_5
+//Given
+u_o=4*%pi*10^-7 //in H/m
+u_ri=2*10^3 //
+N=200 //no. of turns
+d=0.005 //in m
+D=2.5*10^-2 //in m
+A=%pi*(d^2)/4
+l=%pi*D
+L=u_ri*u_o*N^2*A/l
+disp(L,"Approximate inductance of the coil in Henry is")
diff --git a/3492/CH8/EX8.7/Ex8_7.sce b/3492/CH8/EX8.7/Ex8_7.sce
new file mode 100644
index 000000000..d03f9d41c
--- /dev/null
+++ b/3492/CH8/EX8.7/Ex8_7.sce
@@ -0,0 +1,16 @@
+clc
+//Chapter8
+//Ex_7
+//Given
+N=500 //no.of turns
+B=5 //in Tesla
+l=1 //in m
+r=10^-3 //in m
+uo=4*%pi*10^-7 //in H/m
+d=10*10^-2 //in m
+I=(B*l)/(uo*N)
+disp(I,"current in Amperes is")
+E_vol=B^2/(2*uo)
+v=%pi*l*d^2/4
+E=E_vol*v
+disp(E,"Energy stored in the solenoid in joules is")