diff options
Diffstat (limited to '3472/CH46/EX46.3/Example46_3.sce')
-rw-r--r-- | 3472/CH46/EX46.3/Example46_3.sce | 35 |
1 files changed, 35 insertions, 0 deletions
diff --git a/3472/CH46/EX46.3/Example46_3.sce b/3472/CH46/EX46.3/Example46_3.sce new file mode 100644 index 000000000..9e8f5b048 --- /dev/null +++ b/3472/CH46/EX46.3/Example46_3.sce @@ -0,0 +1,35 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART IV : UTILIZATION AND TRACTION
+// CHAPTER 8: BRAKING
+
+// EXAMPLE : 8.3 :
+// Page number 810
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+W = 400.0 // Weight of train(tonne)
+G = 100.0/70 // Gradient(%)
+t = 120.0 // Time(sec)
+V_1 = 80.0 // Speed(km/hr)
+V_2 = 50.0 // Speed(km/hr)
+r_kg = 5.0 // Tractive resistance(kg/tonne)
+I = 7.5 // Rotational inertia(%)
+n = 0.75 // Overall efficiency
+
+// Calculations
+W_e = W*(100+I)/100 // Accelerating weight of train(tonne)
+r = r_kg*9.81 // Tractive resistance(N-m/tonne)
+energy_recuperation = 0.01072*W_e*(V_1**2-V_2**2)/1000 // Energy available for recuperation(kWh)
+F_t = W*(r-98.1*G) // Tractive effort during retardation(N)
+distance = (V_1+V_2)*1000*t/(2*3600) // Distance travelled by train during retardation period(m)
+energy_train = abs(F_t)*distance/(3600*1000) // Energy available during train movement(kWh)
+net_energy = n*(energy_recuperation+energy_train) // Net energy returned to supply system(kWh)
+
+// Results
+disp("PART IV - EXAMPLE : 8.3 : SOLUTION :-")
+printf("\nEnergy returned to lines = %.2f kWh\n", net_energy)
+printf("\nNOTE: ERROR: Calculation mistakes & more approximation in textbook solution")
|