diff options
Diffstat (limited to '3472/CH20/EX20.5/Example20_5.sce')
-rw-r--r-- | 3472/CH20/EX20.5/Example20_5.sce | 30 |
1 files changed, 30 insertions, 0 deletions
diff --git a/3472/CH20/EX20.5/Example20_5.sce b/3472/CH20/EX20.5/Example20_5.sce new file mode 100644 index 000000000..5bac32f82 --- /dev/null +++ b/3472/CH20/EX20.5/Example20_5.sce @@ -0,0 +1,30 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 13: WAVE PROPAGATION ON TRANSMISSION LINES
+
+// EXAMPLE : 13.5 :
+// Page number 366
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+R_A = 500.0 // Surge impedance of line A(ohm)
+R_B = 70.0 // Surge impedance of line B(ohm)
+R_C = 600.0 // Surge impedance of line C(ohm)
+e = 20.0 // Rectangular voltage wave(kV)
+
+// Calculations
+E_2 = e*(1+((R_B-R_A)/(R_B+R_A))) // Transmitted wave(kV)
+E_4 = E_2*(1+((R_C-R_B)/(R_C+R_B))) // First voltage impressed on C(kV)
+E_3 = E_2*(R_C-R_B)/(R_C+R_B) // Reflected wave(kV)
+E_5 = E_3*(R_A-R_B)/(R_A+R_B) // Reflected wave(kV)
+E_6 = E_5*(1+((R_C-R_B)/(R_C+R_B))) // Transmitted wave(kV)
+second = E_4+E_6 // Second voltage impressed on C(kV)
+
+// Results
+disp("PART II - EXAMPLE : 13.5 : SOLUTION :-")
+printf("\nFirst voltage impressed on C = %.1f kV", E_4)
+printf("\nSecond voltage impressed on C = %.1f kV", second)
|