summaryrefslogtreecommitdiff
path: root/3472/CH17/EX17.30/Example17_30.sce
diff options
context:
space:
mode:
Diffstat (limited to '3472/CH17/EX17.30/Example17_30.sce')
-rw-r--r--3472/CH17/EX17.30/Example17_30.sce66
1 files changed, 66 insertions, 0 deletions
diff --git a/3472/CH17/EX17.30/Example17_30.sce b/3472/CH17/EX17.30/Example17_30.sce
new file mode 100644
index 000000000..d5da1258f
--- /dev/null
+++ b/3472/CH17/EX17.30/Example17_30.sce
@@ -0,0 +1,66 @@
+// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 10: POWER SYSTEM STABILITY
+
+// EXAMPLE : 10.30 :
+// Page number 310-311
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+f = 60.0 // Frequency(Hz)
+P = 6.0 // Number of poles
+H = 4.0 // Inertia constant(p.u)
+P_e = 1.0 // Power supplied by generator(p.u)
+E = 1.2 // Internal voltage(p.u)
+V = 1.0 // Infinite bus voltage(p.u)
+X = 0.3 // Line reactance(p.u)
+del_t = 0.05 // Δt = Interval step size(sec)
+
+// Calculations
+P_max = E*V/X // Maximum power(p.u)
+delta_0 = asind(P_e/P_max) // δ_0(°)
+G = P_e
+M = G*H/(180*f) // Angular momentum(p.u)
+P_a_0 = 1.0/2*(P_e-0) // (p.u)
+alpha_0 = P_a_0/M // α_0(°/sec^2)
+del_w_r_1 = alpha_0*del_t // Δω_r_1(°/sec)
+w_r_1 = 0+del_w_r_1 // ω_r_1(°/sec)
+del_delta_1 = w_r_1*del_t // Δδ_1(°)
+delta_1 = delta_0+del_delta_1 // δ_1(°)
+P_a_1 = 1.0*(P_e-0) // (p.u)
+alpha_1 = P_a_1/M // α_1(°/sec^2)
+del_w_r_2 = alpha_1*del_t // Δω_r_2(°/sec)
+w_r_2 = del_w_r_1+del_w_r_2 // ω_r_2(°/sec)
+del_delta_2 = w_r_2*del_t // Δδ_2(°)
+delta_2 = delta_1+del_delta_2 // δ_2(°)
+del_w_r_3 = del_w_r_2 // Δω_r_3(°/sec)
+w_r_3 = w_r_2+del_w_r_3 // ω_r_3(°/sec)
+del_delta_3 = w_r_3*del_t // Δδ_3(°)
+delta_3 = delta_2+del_delta_3 // δ_3(°)
+del_w_r_4 = del_w_r_2 // Δω_r_4(°/sec)
+w_r_4 = w_r_3+del_w_r_4 // ω_r_4(°/sec)
+del_delta_4 = w_r_4*del_t // Δδ_4(°)
+delta_4 = delta_3+del_delta_4 // δ_4(°)
+del_w_r_5 = del_w_r_2 // Δω_r_5(°/sec)
+w_r_5 = w_r_4+del_w_r_5 // ω_r_5(°/sec)
+del_delta_5 = w_r_5*del_t // Δδ_5(°)
+delta_5 = delta_4+del_delta_5 // δ_5(°)
+
+// Results
+disp("PART II - EXAMPLE : 10.30 : SOLUTION :-")
+printf("\nPower angle, δ_0 = %.2f° ", delta_0)
+printf("\nValue of δ vs t are:")
+printf("\n_________________________")
+printf("\n t(Sec) : δ(degree)")
+printf("\n_________________________")
+printf("\n %.1f : %.2f°", 0,delta_0)
+printf("\n %.2f : %.2f°", (del_t),delta_1)
+printf("\n %.2f : %.2f°", (del_t+del_t),delta_2)
+printf("\n %.2f : %.2f°", (del_t*3),delta_3)
+printf("\n %.2f : %.2f°", (del_t*4),delta_4)
+printf("\n %.2f : %.2f°", (del_t*5),delta_5)
+printf("\n_________________________")