diff options
Diffstat (limited to '3472/CH14/EX14.9/Example14_9.sce')
-rw-r--r-- | 3472/CH14/EX14.9/Example14_9.sce | 37 |
1 files changed, 37 insertions, 0 deletions
diff --git a/3472/CH14/EX14.9/Example14_9.sce b/3472/CH14/EX14.9/Example14_9.sce new file mode 100644 index 000000000..155fe19f0 --- /dev/null +++ b/3472/CH14/EX14.9/Example14_9.sce @@ -0,0 +1,37 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 7: UNDERGROUND CABLES
+
+// EXAMPLE : 7.9 :
+// Page number 215
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+d = 2.5 // Conductor diameter(cm)
+D = 6.0 // Sheath diameter(cm)
+V_l = 66.0 // Line Voltage(kV)
+
+// Calculations
+alpha = (D/d)**(1.0/3) // α
+d_1 = d*alpha // Best position of first intersheath(cm)
+d_2 = d_1*alpha // Best position of second intersheath(cm)
+V = V_l/3**0.5*2**0.5 // Peak voltage on core(kV)
+V_2 = V/(1+(1/alpha)+(1/alpha**2)) // Peak voltage on second intersheath(kV)
+V_1 = (1+(1/alpha))*V_2 // Voltage on first intersheath(kV)
+stress_max = 2*V/(d*log(D/d)) // Maximum stress without intersheath(kV/cm)
+stress_min = stress_max*d/D // Minimum stress without intersheath(kV/cm)
+g_max = V*3/(1+alpha+alpha**2) // Maximum stress with intersheath(kV/cm)
+
+// Results
+disp("PART II - EXAMPLE : 7.9 : SOLUTION :-")
+printf("\nMaximum stress without intersheath = %.2f kV/cm", stress_max)
+printf("\nBest position of first intersheath, d_1 = %.2f cm", d_1)
+printf("\nBest position of second intersheath, d_2 = %.3f cm", d_2)
+printf("\nMaximum stress with intersheath = %.2f kV/cm", g_max)
+printf("\nVoltage on the first intersheath, V_1 = %.2f kV", V_1)
+printf("\nVoltage on the second intersheath, V_2 = %.2f kV \n", V_2)
+printf("\nNOTE: Changes in the obtained answer is due to more precision here")
|