diff options
Diffstat (limited to '3472/CH14/EX14.16/Example14_16.sce')
-rw-r--r-- | 3472/CH14/EX14.16/Example14_16.sce | 46 |
1 files changed, 46 insertions, 0 deletions
diff --git a/3472/CH14/EX14.16/Example14_16.sce b/3472/CH14/EX14.16/Example14_16.sce new file mode 100644 index 000000000..e8ce1dea8 --- /dev/null +++ b/3472/CH14/EX14.16/Example14_16.sce @@ -0,0 +1,46 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 7: UNDERGROUND CABLES
+
+// EXAMPLE : 7.16 :
+// Page number 222-223
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+V = 33.0*10**3 // Line Voltage(V)
+f = 50.0 // Frequency(Hz)
+l = 4.0 // Length(km)
+d = 2.5 // Diameter of conductor(cm)
+t = 0.5 // Radial thickness of insulation(cm)
+e_r = 3.0 // Relative permittivity of the dielectric
+PF = 0.02 // Power factor of unloaded cable
+
+// Calculations
+// Case(a)
+r = d/2.0 // Radius of conductor(cm)
+R = r+t // External radius(cm)
+e_0 = 8.85*10**-12 // Permittivity
+C = 2.0*%pi*e_0*e_r/log(R/r)*l*1000 // Capacitance of cable/phase(F)
+// Case(b)
+V_ph = V/3**0.5 // Phase voltage(V)
+I_c = V_ph*2.0*%pi*f*C // Charging current/phase(A)
+// Case(c)
+kVAR = 3.0*V_ph*I_c // Total charging kVAR
+// Case(d)
+phi = acosd(PF) // Φ(°)
+delta = 90.0-phi // δ(°)
+P_c = V_ph*I_c*sind(delta)/1000 // Dielectric loss/phase(kW)
+// Case(e)
+E_max = V_ph/(r*log(R/r)*1000) // RMS value of Maximum stress in cable(kV/cm)
+
+// Results
+disp("PART II - EXAMPLE : 7.16 : SOLUTION :-")
+printf("\nCase(a): Capacitance of the cable, C = %.3e F/phase", C)
+printf("\nCase(b): Charging current = %.2f A/phase", I_c)
+printf("\nCase(c): Total charging kVAR = %.4e kVAR", kVAR)
+printf("\nCase(d): Dielectric loss/phase, P_c = %.2f kW", P_c)
+printf("\nCase(e): Maximum stress in the cable, E_max = %.1f kV/cm (rms)", E_max)
|