diff options
Diffstat (limited to '3472/CH13')
-rw-r--r-- | 3472/CH13/EX13.1/Example13_1.sce | 30 | ||||
-rw-r--r-- | 3472/CH13/EX13.2/Example13_2.sce | 49 |
2 files changed, 79 insertions, 0 deletions
diff --git a/3472/CH13/EX13.1/Example13_1.sce b/3472/CH13/EX13.1/Example13_1.sce new file mode 100644 index 000000000..bb9ce56d4 --- /dev/null +++ b/3472/CH13/EX13.1/Example13_1.sce @@ -0,0 +1,30 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 6: INTERFERENCE OF POWER LINES WITH NEIGHBOURING COMMUNICATION CIRCUITS
+
+// EXAMPLE : 6.1 :
+// Page number 206
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+f = 50.0 // Frequency(Hz)
+d = 4.0 // Spacing b/w conductors(m)
+D = 2.0 // Distance of telephone line below conductor(m)
+s = 60.0/100 // Spacing b/w telephone line(m)
+r = 2.0 // Radius of power line(mm)
+I = 150.0 // Current in power line(A)
+
+// Calculations
+D_ac = (D**2+((d-s)/2)**2)**0.5 // Distance b/w a & c(m)
+D_ad = (D**2+(((d-s)/2)+s)**2)**0.5 // Distance b/w a & d(m)
+M = 4.0*10**-7*log(D_ad/D_ac)*1000 // Mutual inductance b/w circuits(H/km)
+V_CD = 2.0*%pi*f*M*I // Voltage induced in the telephone line(V/km)
+
+// Results
+disp("PART II - EXAMPLE : 6.1 : SOLUTION :-")
+printf("\nMutual inductance between the circuits, M = %.e H/km", M)
+printf("\nVoltage induced in the telephone line, V_CD = %.2f V/km", V_CD)
diff --git a/3472/CH13/EX13.2/Example13_2.sce b/3472/CH13/EX13.2/Example13_2.sce new file mode 100644 index 000000000..56b32b5d2 --- /dev/null +++ b/3472/CH13/EX13.2/Example13_2.sce @@ -0,0 +1,49 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 6: INTERFERENCE OF POWER LINES WITH NEIGHBOURING COMMUNICATION CIRCUITS
+
+// EXAMPLE : 6.2 :
+// Page number 206-207
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+f = 50.0 // Frequency(Hz)
+l = 160.0 // Length of line(km)
+V = 132.0*10**3 // Line voltage(V)
+P = 25.0*10**6 // Load delivered(W)
+PF = 0.8 // Lagging power factor
+r = 5.0/1000 // Radius of power line conductor(m)
+d = 4.0 // Spacing b/w conductors(m)
+OS = 6.0 // Distance(m)
+OT = 6.5 // Distance(m)
+CT = 18.0 // Distance(m)
+
+// Calculations
+AO = 3**0.5*d/2.0 // Distance A to O(m). From figure E6.2
+AS = OS+AO // Distance A to S(m)
+AT = AO+OT // Distance A to T(m)
+OB = d/2.0 // Distance O to B(m)
+BS = (OB**2+OS**2)**0.5 // Distance B to S(m)
+BT = (OB**2+OT**2)**0.5 // Distance B to T(m)
+M_A = 0.2*log(AT/AS) // Mutual inductance at A(mH/km)
+M_B = 0.2*log(BT/BS) // Mutual inductance at B(mH/km)
+M = M_B-M_A // Mutual inductance at C(mH/km)
+I = P/(3**0.5*V*PF) // Current(A)
+E_m = 2.0*%pi*f*M*I*10**-3*l // Induced voltage(V)
+V_A = V/3**0.5 // Phase voltage(V)
+h = AO+CT // Height(m)
+V_SA = V_A*log10(((2*h)-AS)/AS)/log10(((2*h)-r)/r) // Potential(V)
+H = CT // Height(m)
+V_B = V_A // Phase voltage(V)
+V_SB = V_B*log10(((2*H)-BS)/BS)/log10(((2*H)-r)/r) // Potential(V)
+V_S = V_SB-V_SA // Total potential of S w.r.t earth(V)
+
+// Results
+disp("PART II - EXAMPLE : 6.2 : SOLUTION :-")
+printf("\nInduced voltage at fundamental frequency, E_m = %.1f V", E_m)
+printf("\nPotential of telephone conductor S above earth, V_S = %.f V \n", V_S)
+printf("\nNOTE: ERROR: Changes in obtained answer is due to precision and calculation mistakes in textbook")
|