summaryrefslogtreecommitdiff
path: root/3472/CH11
diff options
context:
space:
mode:
Diffstat (limited to '3472/CH11')
-rw-r--r--3472/CH11/EX11.1/Example11_1.sce32
-rw-r--r--3472/CH11/EX11.2/Example11_2.sce30
-rw-r--r--3472/CH11/EX11.3/Example11_3.sce27
-rw-r--r--3472/CH11/EX11.4/Example11_4.sce28
-rw-r--r--3472/CH11/EX11.5/Example11_5.sce34
-rw-r--r--3472/CH11/EX11.6/Example11_6.sce38
-rw-r--r--3472/CH11/EX11.7/Example11_7.sce47
-rw-r--r--3472/CH11/EX11.8/Example11_8.sce30
-rw-r--r--3472/CH11/EX11.9/Example11_9.sce27
9 files changed, 293 insertions, 0 deletions
diff --git a/3472/CH11/EX11.1/Example11_1.sce b/3472/CH11/EX11.1/Example11_1.sce
new file mode 100644
index 000000000..95e4aa69d
--- /dev/null
+++ b/3472/CH11/EX11.1/Example11_1.sce
@@ -0,0 +1,32 @@
+// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 4: OVERHEAD LINE INSULATORS
+
+// EXAMPLE : 4.1 :
+// Page number 183
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+V_1 = 9.0 // Potential across top unit(kV)
+V_2 = 11.0 // Potential across middle unit(kV)
+n = 3.0 // Number of disc insulators
+
+// Calculations
+// Case(a)
+K = (V_2-V_1)/V_1 // Ratio of capacitance b/w pin & earth to self capacitance
+// Case(b)
+V_3 = V_2+(V_1+V_2)*K // Potential across bottom unit(kV)
+V = V_1+V_2+V_3 // Voltage between line and earth(kV)
+V_l = 3**0.5*V // Line voltage(kV)
+// Case(c)
+eff = V/(n*V_3)*100 // String efficiency(%)
+
+// Results
+disp("PART II - EXAMPLE : 4.1 : SOLUTION :-")
+printf("\nCase(a): Ratio of capacitance b/w pin & earth to self-capacitance of each unit, K = %.2f ", K)
+printf("\nCase(b): Line voltage = %.2f kV", V_l)
+printf("\nCase(c): String efficiency = %.f percent", eff)
diff --git a/3472/CH11/EX11.2/Example11_2.sce b/3472/CH11/EX11.2/Example11_2.sce
new file mode 100644
index 000000000..e4411ed97
--- /dev/null
+++ b/3472/CH11/EX11.2/Example11_2.sce
@@ -0,0 +1,30 @@
+// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 4: OVERHEAD LINE INSULATORS
+
+// EXAMPLE : 4.2 :
+// Page number 183-184
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+m = 10.0 // Mutual capacitance of top insulator in terms of C
+
+// Calculations
+X = 1+m // Mutual capacitance in terms of C
+Y = (1.0+2)+m // Mutual capacitance in terms of C
+Z = (1.0+2+3)+m // Mutual capacitance in terms of C
+U = (1.0+2+3+4)+m // Mutual capacitance in terms of C
+V = (1.0+2+3+4+5)+m // Mutual capacitance in terms of C
+
+// Results
+disp("PART II - EXAMPLE : 4.2 : SOLUTION :-")
+printf("\nMutual capacitance of each unit:")
+printf("\n X = %.f*C", X)
+printf("\n Y = %.f*C", Y)
+printf("\n Z = %.f*C", Z)
+printf("\n U = %.f*C", U)
+printf("\n V = %.f*C", V)
diff --git a/3472/CH11/EX11.3/Example11_3.sce b/3472/CH11/EX11.3/Example11_3.sce
new file mode 100644
index 000000000..7553031b6
--- /dev/null
+++ b/3472/CH11/EX11.3/Example11_3.sce
@@ -0,0 +1,27 @@
+// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 4: OVERHEAD LINE INSULATORS
+
+// EXAMPLE : 4.3 :
+// Page number 184
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+n = 3.0 // Number of insulators
+
+// Calculations
+V_1 = 155.0/475.0 // Potential across top unit
+V_2 = 154.0/155.0*V_1 // Potential across middle unit
+V_3 = 166.0/155.0*V_1 // Potential across bottom unit
+eff = 100/(n*V_3) // String efficiency(%)
+
+// Results
+disp("PART II - EXAMPLE : 4.3 : SOLUTION :-")
+printf("\nVoltage across top unit, V_1 = %.3f*V", V_1)
+printf("\nVoltage across middle unit, V_2 = %.3f*V", V_2)
+printf("\nVoltage across bottom unit, V_3 = %.2f*V", V_3)
+printf("\nString efficiency = %.2f percent", eff)
diff --git a/3472/CH11/EX11.4/Example11_4.sce b/3472/CH11/EX11.4/Example11_4.sce
new file mode 100644
index 000000000..8c25ec540
--- /dev/null
+++ b/3472/CH11/EX11.4/Example11_4.sce
@@ -0,0 +1,28 @@
+// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 4: OVERHEAD LINE INSULATORS
+
+// EXAMPLE : 4.4 :
+// Page number 184-185
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+V_3 = 17.5 // Voltage across line unit(kV)
+c = 1.0/8 // Shunt capacitance = 1/8 of insulator capacitance
+n = 3.0 // Number of insulators
+
+// Calculations
+K = c // String constant
+V_1 = V_3/(1+3*K+K**2) // Voltage across top unit(kV)
+V_2 = (1+K)*V_1 // Voltage across middle unit(kV)
+V = V_1+V_2+V_3 // Voltage between line & earth(kV)
+eff = V*100/(n*V_3) // String efficiency(%)
+
+// Results
+disp("PART II - EXAMPLE : 4.4 : SOLUTION :-")
+printf("\nLine to neutral voltage, V = %.2f kV", V)
+printf("\nString efficiency = %.2f percent", eff)
diff --git a/3472/CH11/EX11.5/Example11_5.sce b/3472/CH11/EX11.5/Example11_5.sce
new file mode 100644
index 000000000..8580249b6
--- /dev/null
+++ b/3472/CH11/EX11.5/Example11_5.sce
@@ -0,0 +1,34 @@
+// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 4: OVERHEAD LINE INSULATORS
+
+// EXAMPLE : 4.5 :
+// Page number 185
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+n = 8.0 // Number of insulators
+
+// Calculations
+A = 1.0/(n-1) // Line to pin capacitance
+B = 2.0/(n-2) // Line to pin capacitance
+C = 3.0/(n-3) // Line to pin capacitance
+D = 4.0/(n-4) // Line to pin capacitance
+E = 5.0/(n-5) // Line to pin capacitance
+F = 6.0/(n-6) // Line to pin capacitance
+G = 7.0/(n-7) // Line to pin capacitance
+
+// Results
+disp("PART II - EXAMPLE : 4.5 : SOLUTION :-")
+printf("\nLine-to-pin capacitance are:")
+printf("\n A = %.3f*C", A)
+printf("\n B = %.3f*C", B)
+printf("\n C = %.3f*C", C)
+printf("\n D = %.3f*C", D)
+printf("\n E = %.3f*C", E)
+printf("\n F = %.3f*C", F)
+printf("\n G = %.3f*C", G)
diff --git a/3472/CH11/EX11.6/Example11_6.sce b/3472/CH11/EX11.6/Example11_6.sce
new file mode 100644
index 000000000..16f14b894
--- /dev/null
+++ b/3472/CH11/EX11.6/Example11_6.sce
@@ -0,0 +1,38 @@
+// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 4: OVERHEAD LINE INSULATORS
+
+// EXAMPLE : 4.6 :
+// Page number 186
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+m = 6.0 // Mutual capacitance
+n = 5.0 // Number of insulators
+
+// Calculations
+E_4 = (1+(1/m)) // Voltage across 4th insulator as percent of E_5(%)
+E_3 = (1+(3/m)+(1/m**2)) // Voltage across 3rd insulator as percent of E_5(%)
+E_2 = (1+(6/m)+(5/m**2)+(1/m**3)) // Voltage across 2nd insulator as percent of E_5(%)
+E_1 = (1+(10/m)+(15/m**2)+(7/m**3)+(1/m**4)) // Voltage across 1st insulator as percent of E_5(%)
+E_5 = 100/(E_4+E_3+E_2+E_1+1) // Voltage across 5th insulator as percent of E_5(%)
+E4 = E_4*E_5 // Voltage across 4th insulator as percent of E_5(%)
+E3 = E_3*E_5 // Voltage across 3rd insulator as percent of E_5(%)
+E2 = E_2*E_5 // Voltage across 2nd insulator as percent of E_5(%)
+E1 = E_1*E_5 // Voltage across 1st insulator as percent of E_5(%)
+eff = 100/(n*E1/100) // String efficiency(%)
+
+// Results
+disp("PART II - EXAMPLE : 4.6 : SOLUTION :-")
+printf("\nVoltage distribution as a percentage of voltage of conductor to earth are:")
+printf("\n E_1 = %.2f percent", E1)
+printf("\n E_2 = %.2f percent", E2)
+printf("\n E_3 = %.1f percent", E3)
+printf("\n E_4 = %.1f percent", E4)
+printf("\n E_5 = %.2f percent", E_5)
+printf("\nString efficiency = %.f percent \n", eff)
+printf("\nNOTE: Changes in obtained answer from that of textbook is due to more precision")
diff --git a/3472/CH11/EX11.7/Example11_7.sce b/3472/CH11/EX11.7/Example11_7.sce
new file mode 100644
index 000000000..8f8365baf
--- /dev/null
+++ b/3472/CH11/EX11.7/Example11_7.sce
@@ -0,0 +1,47 @@
+// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 4: OVERHEAD LINE INSULATORS
+
+// EXAMPLE : 4.7 :
+// Page number 186-187
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+n = 3.0 // Number of insulators
+C_1 = 0.2 // Capacitance in terms of C
+C_2 = 0.1 // Capacitance in terms of C
+
+// Calculations
+// Without guard ring
+e_2_a = 13.0/13.3 // Potential across middle unit as top unit
+e_1_a = 8.3/6.5*e_2_a // Potential across bottom unit
+E_a = 1+(1/(8.3/6.5))+(1/e_1_a) // Voltage in terms of e_1
+eff_a = E_a/n*100 // String efficiency(%)
+e1_a = 1/E_a // Voltage across bottom unit as a % of line voltage
+e2_a = 1/(8.3/6.5)*e1_a // Voltage across middle unit as a % of line voltage
+e3_a = 1/e_1_a*e1_a // Voltage across top unit as a % of line voltage
+// With guard ring
+e_2_b = 15.4/15.5 // Potential across middle unit as top unit
+e_1_b = 8.3/7.7*e_2_b // Potential across bottom unit
+E_b = 1+(1/(8.3/7.7))+(1/e_1_b) // Voltage in terms of e_1
+eff_b = E_b/n*100 // String efficiency(%)
+e1_b = 1/E_b // Voltage across bottom unit as a % of line voltage
+e2_b = 1/(8.3/7.7)*e1_b // Voltage across middle unit as a % of line voltage
+e3_b = 1/e_1_b*e1_b // Voltage across top unit as a % of line voltage
+
+// Results
+disp("PART II - EXAMPLE : 4.7 : SOLUTION :-")
+printf("\nWithout guard ring:")
+printf("\n Voltage across bottom unit, e_1 = %.2f*E", e1_a)
+printf("\n Voltage across bottom unit, e_2 = %.2f*E", e2_a)
+printf("\n Voltage across bottom unit, e_3 = %.2f*E", e3_a)
+printf("\n String efficiency = %.1f percent \n", eff_a)
+printf("\nWith guard ring:")
+printf("\n Voltage across bottom unit, e_1 = %.2f*E", e1_b)
+printf("\n Voltage across bottom unit, e_2 = %.2f*E", e2_b)
+printf("\n Voltage across bottom unit, e_3 = %.3f*E", e3_b)
+printf("\n String efficiency = %.2f percent", eff_b)
diff --git a/3472/CH11/EX11.8/Example11_8.sce b/3472/CH11/EX11.8/Example11_8.sce
new file mode 100644
index 000000000..50deb663b
--- /dev/null
+++ b/3472/CH11/EX11.8/Example11_8.sce
@@ -0,0 +1,30 @@
+// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 4: OVERHEAD LINE INSULATORS
+
+// EXAMPLE : 4.8 :
+// Page number 187-188
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+n = 3.0 // Number of insulators
+
+// Calculations
+V_1 = 0.988 // Voltage across top unit as middle unit
+V_3 = 1.362 // Voltage across bottom unit as middle unit
+V_2 = 1/(V_1+1+V_3) // Voltage across middle unit as % of line voltage to earth
+V1 = V_1*V_2*100 // Voltage across top unit as % of line voltage to earth
+V2 = V_2*100 // Voltage across middle unit as % of line voltage to earth
+V3 = V_3*V_2*100 // Voltage across bottom unit as % of line voltage to earth
+eff = 100/(n*V3/100) // String efficiency(%)
+
+// Results
+disp("PART II - EXAMPLE : 4.8 : SOLUTION :-")
+printf("\nCase(a): Voltage across top unit as a percentage of line voltage to earth, V_1 = %.2f percent", V1)
+printf("\n Voltage across middle unit as a percentage of line voltage to earth, V_2 = %.2f percent", V2)
+printf("\n Voltage across bottom unit as a percentage of line voltage to earth, V_3 = %.2f percent", V3)
+printf("\nCase(b): String efficiency = %.2f percent", eff)
diff --git a/3472/CH11/EX11.9/Example11_9.sce b/3472/CH11/EX11.9/Example11_9.sce
new file mode 100644
index 000000000..31dac7aa1
--- /dev/null
+++ b/3472/CH11/EX11.9/Example11_9.sce
@@ -0,0 +1,27 @@
+// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 4: OVERHEAD LINE INSULATORS
+
+// EXAMPLE : 4.9 :
+// Page number 188
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+n = 3.0 // Number of insulators
+V = 20.0 // Voltage across each conductor(kV)
+c = 1.0/5 // Capacitance ratio
+
+// Calculations
+V_2 = 6.0/5.0 // Voltage across middle unit as top unit
+V_1 = V/(1+2*V_2) // Voltage across top unit(kV)
+V_3 = V_2*V_1 // Voltage across bottom unit(kV)
+C_x = c*(1+(1/V_2)) // Capacitance required
+
+// Results
+disp("PART II - EXAMPLE : 4.9 : SOLUTION :-")
+printf("\nCase(a): Voltage on the line-end unit, V_3 = %.2f kV", V_3)
+printf("\nCase(b): Value of capacitance required, Cx = %.3f*C", C_x)