summaryrefslogtreecommitdiff
path: root/3472/CH10/EX10.9/Example10_9.sce
diff options
context:
space:
mode:
Diffstat (limited to '3472/CH10/EX10.9/Example10_9.sce')
-rw-r--r--3472/CH10/EX10.9/Example10_9.sce48
1 files changed, 48 insertions, 0 deletions
diff --git a/3472/CH10/EX10.9/Example10_9.sce b/3472/CH10/EX10.9/Example10_9.sce
new file mode 100644
index 000000000..267c9917a
--- /dev/null
+++ b/3472/CH10/EX10.9/Example10_9.sce
@@ -0,0 +1,48 @@
+// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 3: STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES
+
+// EXAMPLE : 3.9 :
+// Page number 134
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+f = 50.0 // Frequency(Hz)
+E_r = 66.0*10**3 // Line voltage at receiving end(V)
+l = 120.0 // Line length(km)
+r = 0.1 // Resistance(ohm/km/phase)
+x = 0.3 // Inductive reactance(ohm/km/phase)
+y = 0.04*10**-4 // Capacitive susceptance(S/km/phase)
+P_L = 10.0*10**6 // Load at receiving end(W)
+PF_r = 0.8 // Lagging load power factor
+
+// Calculations
+R = r*l // Total resistance(ohm/phase)
+X = x*l // Inductive reactance(ohm/phase)
+Y = y*l // Susceptance(mho)
+Z = complex(R,X) // Total impedance(ohm/phase)
+V_r = E_r/3**0.5 // Receiving end phase voltage(V)
+I_r = P_L/(3**0.5*E_r*PF_r)*exp(%i*-acos(PF_r)) // Load current(A)
+V_1 = V_r+I_r*(Z/2) // Voltage across capacitor(V)
+I_c = %i*Y*V_1 // Charging current(A)
+I_s = I_r+I_c // Sending end current(A)
+V_s = V_1+I_s*(Z/2) // Sending end voltage(V/phase)
+V_s_ll = 3**0.5*abs(V_s)/1000.0 // Sending end line to line voltage(kV)
+angle_Vr_Vs = phasemag(V_s) // Angle between V_r and V_s(°)
+angle_Vr_Is = phasemag(I_s) // Angle between V_r and I_s(°)
+angle_Vs_Is = angle_Vr_Vs-angle_Vr_Is // Angle between V_s and I_s(°)
+PF_s = cosd(angle_Vs_Is) // Sending end power factor
+P_s = 3*abs(V_s*I_s)*PF_s // Sending end power(W)
+n = P_L/P_s*100 // Transmission efficiency(%)
+
+// Results
+disp("PART II - EXAMPLE : 3.9 : SOLUTION :-")
+printf("\nSending end voltage, |V_s| = %.f V/phase = %.3f V (line-to-line)", abs(V_s),V_s_ll)
+printf("\nSending end current, |I_s| = %.2f A", abs(I_s))
+printf("\nTransmission efficiency = %.2f percent \n", n)
+printf("\nNOTE: ERROR: Calculation mistake in finding sending end power factor")
+printf("\n Changes in the obtained answer from that of textbook is due to more precision")