summaryrefslogtreecommitdiff
path: root/3472/CH10/EX10.6/Example10_6.sce
diff options
context:
space:
mode:
Diffstat (limited to '3472/CH10/EX10.6/Example10_6.sce')
-rw-r--r--3472/CH10/EX10.6/Example10_6.sce41
1 files changed, 41 insertions, 0 deletions
diff --git a/3472/CH10/EX10.6/Example10_6.sce b/3472/CH10/EX10.6/Example10_6.sce
new file mode 100644
index 000000000..2f0b97ae1
--- /dev/null
+++ b/3472/CH10/EX10.6/Example10_6.sce
@@ -0,0 +1,41 @@
+// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 3: STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES
+
+// EXAMPLE : 3.6 :
+// Page number 130-131
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+f = 50.0 // Frequency(Hz)
+l = 10.0 // Line length(km)
+Z_l = 0.5*exp(%i*60.0*%pi/180) // Load impedance(ohm/km)
+P = 316.8*10**3 // Load side power(W)
+PF_r = 0.8 // Load side power factor
+E_r = 3.3*10**3 // Load bus voltage(V)
+
+// Calculations
+Z_line = Z_l*l // Load impedance(ohm)
+I_r = P/(E_r*PF_r)*exp(%i*-acos(PF_r)) // Line current(A)
+sin_phi_r = (1-PF_r**2)**0.5 // Sinφ_R
+E_s = E_r+I_r*Z_line // Sending end voltage(V)
+reg = (abs(E_s)-abs(E_r))/abs(E_r)*100 // Voltage regulation(%)
+R = real(Z_line) // Resistance of the load line(ohm)
+loss = abs(I_r)**2*R // Loss in the transmission line(W)
+loss_kW = loss/1000.0 // Loss in the transmission line(kW)
+P_s = P+loss // Sending end power(W)
+angle_Er_Es = phasemag(E_s) // Angle between V_r and V_s(°)
+angle_Er_Ir = acosd(PF_r) // Angle between V_r and I_r(°)
+angle_Es_Is = angle_Er_Es+angle_Er_Ir // Angle between V_s and I_s(°)
+PF_s = cosd(angle_Es_Is) // Sending end power factor
+
+// Results
+disp("PART II - EXAMPLE : 3.6 : SOLUTION :-")
+printf("\nVoltage regulation = %.2f percent", reg)
+printf("\nSending end voltage, E_s = %.f∠%.1f° V", abs(E_s),phasemag(E_s))
+printf("\nLine loss = %.f kW", loss_kW)
+printf("\nSending end power factor = %.2f ", PF_s)