diff options
Diffstat (limited to '3472/CH10/EX10.26/Example10_26.sce')
-rw-r--r-- | 3472/CH10/EX10.26/Example10_26.sce | 33 |
1 files changed, 33 insertions, 0 deletions
diff --git a/3472/CH10/EX10.26/Example10_26.sce b/3472/CH10/EX10.26/Example10_26.sce new file mode 100644 index 000000000..e02f70f55 --- /dev/null +++ b/3472/CH10/EX10.26/Example10_26.sce @@ -0,0 +1,33 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 3: STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES
+
+// EXAMPLE : 3.26 :
+// Page number 163-164
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+L = 100.0 // Length of line(km)
+PF_r = 1.0 // Receiving end Power factor
+Z_c = 400.0 // Characteristic impedance(ohm)
+beta = 1.2*10**-3 // Propagation constant(rad/km)
+V_s = 230.0 // Sending end voltage(kV)
+
+// Calculations
+beta_L = beta*L // (rad)
+beta_L_d = beta_L*180/%pi // (°)
+A = cosd(beta_L) // Constant
+B = %i*Z_c*sin(beta_L) // Constant
+alpha_angle = phasemag(A) // α(°)
+beta_angle = phasemag(B) // β(°)
+V_r = V_s // Receiving end voltage due to lossless line(kV)
+P_max = (V_s*V_r/abs(B))-(abs(A)*V_r**2/abs(B))*cosd(beta_angle-alpha_angle) // Maximum power transferred(MW)
+
+// Results
+disp("PART II - EXAMPLE : 3.26 : SOLUTION :-")
+printf("\nMaximum power that can be transferred to the load at receiving end, P_max = %.f MW \n", P_max)
+printf("\nNOTE: Changes in obtained answer from that of textbook is due to more precision")
|