diff options
Diffstat (limited to '3472/CH10/EX10.25/Example10_25.sce')
-rw-r--r-- | 3472/CH10/EX10.25/Example10_25.sce | 39 |
1 files changed, 39 insertions, 0 deletions
diff --git a/3472/CH10/EX10.25/Example10_25.sce b/3472/CH10/EX10.25/Example10_25.sce new file mode 100644 index 000000000..07edf2730 --- /dev/null +++ b/3472/CH10/EX10.25/Example10_25.sce @@ -0,0 +1,39 @@ +// A Texbook on POWER SYSTEM ENGINEERING
+// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
+// DHANPAT RAI & Co.
+// SECOND EDITION
+
+// PART II : TRANSMISSION AND DISTRIBUTION
+// CHAPTER 3: STEADY STATE CHARACTERISTICS AND PERFORMANCE OF TRANSMISSION LINES
+
+// EXAMPLE : 3.25 :
+// Page number 163
+clear ; clc ; close ; // Clear the work space and console
+
+// Given data
+z = complex(0.2,0.6) // Per phase impedance(ohm)
+V_r = 6351.0 // Receiving end voltage per phase(V)
+reg = 7.5/100.0 // Voltage regulation
+
+// Calculations
+V_s = (1+reg)*V_r // Sending end voltage per phase(V)
+R = real(z) // Resistance of the line(ohm)
+X = imag(z) // Reactance of the line(ohm)
+Z = (R**2+X**2)**0.5 // Impedance per phase(ohm)
+P_m = (V_r**2/Z)*((Z*V_s/V_r)-R) // Maximum power transmitted through line(W/phase)
+P_m_MW = P_m/10**6 // Maximum power transmitted through line(MW/phase)
+P_m_MWtotal = 3*P_m_MW // Total maximum power(MW)
+Q = -(V_r**2*X)/Z**2 // Reactive power per phase(Var)
+Q_MW = Q/10**6 // Reactive power per phase(MVAR)
+phi_r = atand(abs(Q_MW/P_m_MW)) // Φ_r(°)
+PF_r = cosd(phi_r) // Receiving end lagging PF
+I = P_m/(V_r*PF_r) // Current delivered(A)
+I_KA = I/1000.0 // Current delivered(KA)
+loss = 3*I**2*R // Total line loss(W)
+loss_MW = loss/10**6 // Total line loss(MW)
+
+// Results
+disp("PART II - EXAMPLE : 3.25 : SOLUTION :-")
+printf("\nMaximum power transmitted through the line, P_m = %.1f MW", P_m_MWtotal)
+printf("\nReceiving end power factor = %.2f (lagging)", PF_r)
+printf("\nTotal line loss = %.2f MW", loss_MW)
|