summaryrefslogtreecommitdiff
path: root/3411
diff options
context:
space:
mode:
Diffstat (limited to '3411')
-rw-r--r--3411/CH1/EX1.11.u1/Ex1_11_u1.sce16
-rw-r--r--3411/CH1/EX1.12.u1/Ex1_12_u1.sce28
-rw-r--r--3411/CH10/EX2.1.u2/Ex2_1_u2.sce4
-rw-r--r--3411/CH10/EX2.1.u2/Ex2_1_u2.txt6
-rw-r--r--3411/CH10/EX2.2.u2/Ex2_2_u2.sce20
-rw-r--r--3411/CH10/EX2.2.u2/Ex2_2_u2.txt6
-rw-r--r--3411/CH10/EX2.3.u2/Ex2_3_u2.sce18
-rw-r--r--3411/CH10/EX2.3.u2/Ex2_3_u2.txt4
-rw-r--r--3411/CH10/EX2.4.u2/Ex2_4_u2.sce30
-rw-r--r--3411/CH10/EX2.4.u2/Ex2_4_u2.txt8
-rw-r--r--3411/CH10/EX2.5.u2/Ex2_5_u2.sce8
-rw-r--r--3411/CH10/EX2.6.u2/Ex2_6_u2.sce6
-rw-r--r--3411/CH10/EX2.7.u2/Ex2_7_u2.sce2
-rw-r--r--3411/CH10/EX2.8.u2/Ex2_8_u2.sce16
-rw-r--r--3411/CH10/EX2.8.u2/Ex2_8_u2.txt4
-rw-r--r--3411/CH10/EX2.9.u2/Ex2_9_u2.sce12
-rw-r--r--3411/CH13/EX5.2.u2/Ex5_2_u2.sce8
-rw-r--r--3411/CH13/EX5.2.u2/Ex5_2_u2.txt2
-rw-r--r--3411/CH13/EX5.3.u2/Ex5_3_u2.sce8
-rw-r--r--3411/CH13/EX5.3.u2/Ex5_3_u2.txt3
-rw-r--r--3411/CH14/EX6.1.u2/Ex6_1_u2.sce6
-rw-r--r--3411/CH14/EX6.2.u2/Ex6_2_u2.sce8
-rw-r--r--3411/CH14/EX6.2.u2/Ex6_2_u2.txt3
-rw-r--r--3411/CH15/EX7.1.u2/Ex7_1_u2.sce14
-rw-r--r--3411/CH15/EX7.1.u2/Ex7_1_u2.txt1
-rw-r--r--3411/CH15/EX7.2.u2/Ex7_2_u2.sce6
-rw-r--r--3411/CH15/EX7.3.u2/Ex7_3_u2.sce6
-rw-r--r--3411/CH15/EX7.4.u2/Ex7_4_u2.sce9
-rw-r--r--3411/CH15/EX7.5.u2/Ex7_5_u2.sce18
-rw-r--r--3411/CH15/EX7.5.u2/Ex7_5_u2.txt2
-rw-r--r--3411/CH5/EX5.10.u1/Ex5_10_u1.sce14
-rw-r--r--3411/CH5/EX5.10.u1/Ex5_10_u1.txt2
-rw-r--r--3411/CH5/EX5.11.u1/Ex5_11_u1.sce74
-rw-r--r--3411/CH5/EX5.11.u1/Ex5_11_u1.txt13
-rw-r--r--3411/CH5/EX5.12.u1/Ex5_12_u1.sce51
-rw-r--r--3411/CH5/EX5.12.u1/Ex5_12_u1.txt10
-rw-r--r--3411/CH5/EX5.13.u1/Ex5_13_u1.sce96
-rw-r--r--3411/CH5/EX5.13.u1/Ex5_13_u1.txt18
-rw-r--r--3411/CH5/EX5.14.u1/Ex5_14_u1.sce10
-rw-r--r--3411/CH5/EX5.15.u1/Ex5_15_u1.sce8
-rw-r--r--3411/CH5/EX5.16.u1/Ex5_16_u1.sce18
-rw-r--r--3411/CH5/EX5.16.u1/Ex5_16_u1.txt4
-rw-r--r--3411/CH5/EX5.9.u1/Ex5_9_u1.sce14
-rw-r--r--3411/CH5/EX5.9.u1/Ex5_9_u1.txt4
-rw-r--r--3411/CH6/EX6.1.u1/Ex6_1_u1.sce10
-rw-r--r--3411/CH6/EX6.2.u1/Ex6_2_u1.sce12
-rw-r--r--3411/CH6/EX6.2.u1/Ex6_2_u1.txt2
-rw-r--r--3411/CH6/EX6.3.u1/Ex6_3_u1.sce14
-rw-r--r--3411/CH6/EX6.3.u1/Ex6_3_u1.txt2
-rw-r--r--3411/CH6/EX6.4.u1/Ex6_4_u1.sce11
-rw-r--r--3411/CH6/EX6.5.u1/Ex6_5_u1.sce8
-rw-r--r--3411/CH6/EX6.6.u1/Ex6_6_u1.sce11
-rw-r--r--3411/CH6/EX6.7.u1/Ex6_7_u1.sce9
-rw-r--r--3411/CH7/EX7.2.u1/Ex7_2_u1.sce11
-rw-r--r--3411/CH9/EX1.1.u2/Ex1_1_u2.sce15
-rw-r--r--3411/CH9/EX1.1.u2/Ex1_1_u2.txt4
-rw-r--r--3411/CH9/EX1.2.u2/Ex1_2_u2.sce11
-rw-r--r--3411/CH9/EX1.3.u2/Ex1_3_u2.sce7
-rw-r--r--3411/CH9/EX1.4.u2/Ex1_4_u2.sce10
59 files changed, 475 insertions, 280 deletions
diff --git a/3411/CH1/EX1.11.u1/Ex1_11_u1.sce b/3411/CH1/EX1.11.u1/Ex1_11_u1.sce
index 7a6fee415..cc257d8e7 100644
--- a/3411/CH1/EX1.11.u1/Ex1_11_u1.sce
+++ b/3411/CH1/EX1.11.u1/Ex1_11_u1.sce
@@ -1,8 +1,8 @@
-//Example 1_11_u1
-clc();
-clear;
-//To calculate refractive Index of liquid
- d10=1.40
- d_10=1.27
- u=(d10/d_10)^2
- printf("The refractive index of liquid is %.3f",u)
+//Example 1_11_u1
+clc;
+clear;
+//To calculate refractive Index of liquid
+ d10=1.40
+ d_10=1.27
+ u=(d10/d_10)^2
+ printf("The refractive index of liquid is %.3f",u) \ No newline at end of file
diff --git a/3411/CH1/EX1.12.u1/Ex1_12_u1.sce b/3411/CH1/EX1.12.u1/Ex1_12_u1.sce
index f820e4c4e..3e2a2dbb6 100644
--- a/3411/CH1/EX1.12.u1/Ex1_12_u1.sce
+++ b/3411/CH1/EX1.12.u1/Ex1_12_u1.sce
@@ -1,14 +1,14 @@
-//Example 1_12_u1
-clc();
-clear;
-//To calculate the wavelength of the light used
-Dnp=0.8 //units in cm
-Dn=0.3 //units in cm
-n1=25
-n2=5
-p=n1-n2
-R=100 //units in cm
-lamda=(Dnp^2-Dn^2)/(4*p*R) //units in cm
-printf("The wavelength of light used is %.8fcm",lamda)
-//In text book the answer is printed wrong as 4.87*10^-5cm
-//correct Answer is 6.875*10^-5cm
+//Example 1_12_u1
+clc;
+clear;
+//To calculate the wavelength of the light used
+Dnp=0.8 //units in cm
+Dn=0.3 //units in cm
+n1=25
+n2=5
+p=n1-n2
+R=100 //units in cm
+lamda=(Dnp^2-Dn^2)/(4*p*R) //units in cm
+printf("The wavelength of light used is %.8fcm",lamda)
+//In text book the answer is printed wrong as 4.87*10^-5cm
+//correct Answer is 6.875*10^-5cm \ No newline at end of file
diff --git a/3411/CH10/EX2.1.u2/Ex2_1_u2.sce b/3411/CH10/EX2.1.u2/Ex2_1_u2.sce
index 86f3f984f..47380cd3c 100644
--- a/3411/CH10/EX2.1.u2/Ex2_1_u2.sce
+++ b/3411/CH10/EX2.1.u2/Ex2_1_u2.sce
@@ -12,8 +12,8 @@ disp(n)
printf("m^-3")
row=6.8*10^7 //units in ohm^-1 metre^-1
n=5.86*10^28 //units in m^-3
-e=1.6*10^-19
-u=(row)/(n*e)
+e=1.6*10^-19 //units in coulombs
+u=(row)/(n*e) //units in m^2 V^-1 sec^-1
printf("\nThe conductivity is u=")
disp(u)
printf("m^2 V^-1 sec^-1")
diff --git a/3411/CH10/EX2.1.u2/Ex2_1_u2.txt b/3411/CH10/EX2.1.u2/Ex2_1_u2.txt
index c6fda9f9b..1fe08d8d9 100644
--- a/3411/CH10/EX2.1.u2/Ex2_1_u2.txt
+++ b/3411/CH10/EX2.1.u2/Ex2_1_u2.txt
@@ -1,6 +1,4 @@
The number density of electrons is n=
- 5.861D+28
-m^-3
+ 5.861D+28 m^-3
The conductivity is u=
- 0.0072526
-m^2 V^-1 sec^-1 \ No newline at end of file
+ 0.0072526 m^2 V^-1 sec^-1 \ No newline at end of file
diff --git a/3411/CH10/EX2.2.u2/Ex2_2_u2.sce b/3411/CH10/EX2.2.u2/Ex2_2_u2.sce
index da5cee937..1e5a6ee64 100644
--- a/3411/CH10/EX2.2.u2/Ex2_2_u2.sce
+++ b/3411/CH10/EX2.2.u2/Ex2_2_u2.sce
@@ -2,22 +2,22 @@
clc();
clear;
//To corresponding mean free path and compare with experimental value
-row=6.87*10^7
-m=9.11*10^-31
-n=5.86*10^28
-e=1.6*10^-19
+row=6.87*10^7 //units in Kg/m^3
+m=9.11*10^-31 //units in Kgs
+n=5.86*10^28 //units in m^-3
+e=1.6*10^-19 //units in coulombs
t=(row*m)/(n*e^2) //units in s
printf("The mean free path is t=")
disp(t)
printf("sec")
-kb=1.381*10^-23
-T=300
-m=9.11*10^-31
+kb=1.381*10^-23 //units in m^2 kg s^-2 K^-1
+T=300 //units in K
+m=9.11*10^-31 //units in Kgs
v=(sqrt(3*kb*T))/sqrt(m) //units in m/s
printf("\nVelocity v=%.2f m/s\n",v)
-lamda=t*v //units in mts
+lamda=t*v //units in meters
printf("Wavelength is lamda=")
disp(lamda)
-printf("mts")
+printf("meters")
printf("\nThe experimental value is ten times higher than predicted value")
-//In textbook the answer is printed wrong as t=2.84*10^-14S and lamda=3.28*10^-9mts but correct answer is t=4.172D-14sec and lamda=4.873D-09 mts
+//In textbook the answer is printed wrong as t=2.84*10^-14 s and lamda=3.28*10^-9 meters but correct answer is t=4.172D-14sec and lamda=4.873D-09 meters
diff --git a/3411/CH10/EX2.2.u2/Ex2_2_u2.txt b/3411/CH10/EX2.2.u2/Ex2_2_u2.txt
index d71686ef3..4e141c5e2 100644
--- a/3411/CH10/EX2.2.u2/Ex2_2_u2.txt
+++ b/3411/CH10/EX2.2.u2/Ex2_2_u2.txt
@@ -1,8 +1,6 @@
The mean free path is t=
- 4.172D-14
-sec
+ 4.172D-14 sec
Velocity v=116804.32 m/s
Wavelength is lamda=
- 4.873D-09
-mts
+ 4.873D-09 meters
The experimental value is ten times higher than predicted value \ No newline at end of file
diff --git a/3411/CH10/EX2.3.u2/Ex2_3_u2.sce b/3411/CH10/EX2.3.u2/Ex2_3_u2.sce
index 1155e7e43..7436f5d1e 100644
--- a/3411/CH10/EX2.3.u2/Ex2_3_u2.sce
+++ b/3411/CH10/EX2.3.u2/Ex2_3_u2.sce
@@ -3,17 +3,17 @@ clc();
clear;
//To calculate the drift velocity and their mobility
rowm=2700 //units in kg/m^3
-NA=6.023*10^23
+NA=6.023*10^23 //Avagadro number
MA=26.98*10^-3 //units in Kg
n=(rowm*NA)/MA //units in m^-3
row=2.52*10^-6 //units in ohm metre
-e=1.6*10^-19
-u=(row/(n*e))*10^13 //units in met^2 V^-1 s^-1
-E=50 //units in V/mts
-vd=u*E //units in mts/sec
-printf("The drift velocity of conduction electrons is vd=%.4f met/sec",vd)
+e=1.6*10^-19 //units in coulombs
+u=(row/(n*e))*10^13 //units in meter^2 V^-1 s^-1
+E=50 //units in Volt/meter
+vd=u*E //units in meter/sec
+printf("The drift velocity of conduction electrons is vd=%.4f meter/sec",vd)
printf("\nMobility of conduction electrons is n=")
disp(n)
-printf("metres^-3")
-//Given in text book mobility is n=18.07*10^28 met^-3 but the correct answer is n=6.027D+28 met^-3
-//Given in text book vd=0.066 met/sec which is wrong and the correct one is vd=0.1307 met/sec
+printf("meter^-3")
+//Given in text book mobility is n=18.07*10^28 meter^-3 but the correct answer is n=6.027D+28 meter^-3
+//Given in text book vd=0.066 meter/sec which is wrong and the correct one is vd=0.1307 meter/sec
diff --git a/3411/CH10/EX2.3.u2/Ex2_3_u2.txt b/3411/CH10/EX2.3.u2/Ex2_3_u2.txt
index 8fe9b2cf8..fe6253235 100644
--- a/3411/CH10/EX2.3.u2/Ex2_3_u2.txt
+++ b/3411/CH10/EX2.3.u2/Ex2_3_u2.txt
@@ -1,4 +1,4 @@
-The drift velocity of conduction electrons is vd=0.1307 met/sec
+The drift velocity of conduction electrons is vd=0.1307 meter/sec
Mobility of conduction electrons is n=
6.027D+28
-metres^-3 \ No newline at end of file
+meter^-3 \ No newline at end of file
diff --git a/3411/CH10/EX2.4.u2/Ex2_4_u2.sce b/3411/CH10/EX2.4.u2/Ex2_4_u2.sce
index 70d03462c..a112d2363 100644
--- a/3411/CH10/EX2.4.u2/Ex2_4_u2.sce
+++ b/3411/CH10/EX2.4.u2/Ex2_4_u2.sce
@@ -2,19 +2,19 @@
clc();
clear;
//To calculate the current density in each wire and drift speed of electrons
-dcu=1.8*10^-3 //units in mts
-dAl=2.5*10^-3 //units in mts
-Acu=(%pi*dcu^2)/4 //units in met^2
-AAl=(%pi*dAl^2)/4 //units in met^2
+dcu=1.8*10^-3 //units in meters
+dAl=2.5*10^-3 //units in meters
+Acu=(%pi*dcu^2)/4 //units in meter^2
+AAl=(%pi*dAl^2)/4 //units in meter^2
ia=1.3 //units in amperes
-jcu=ia/Acu //units in A/met^2
-jAl=ia/AAl //units in A/met^2
-printf("Current density in Copper is jcu=%.2f A/met^2\n",jcu)
-printf("Current density in Aluminium is jal=%.2f A/met^2\n",jAl)
-d1=8.49*10^28 //units in met^-3
-d2=18*10^28 //units in met^-3
-e=1.6*10^-19
-vdcu=jcu/(d1*e) //units in met/sec
-vdal=jAl/(d2*e) //units in met/sec
-printf("Drift speed of electrons in copper vdcu=%.6f met/sec\n",vdcu)
-printf("Drift speed of electrons in Aluminium vdal=%.6f met/sec\n",vdal)
+jcu=ia/Acu //units in A/meter^2
+jAl=ia/AAl //units in A/meter^2
+printf("Current density in Copper is jcu=%.2f A/meter^2\n",jcu)
+printf("Current density in Aluminium is jal=%.2f A/meter^2\n",jAl)
+d1=8.49*10^28 //units in meter^-3
+d2=18*10^28 //units in meter^-3
+e=1.6*10^-19 //units in coulombs
+vdcu=jcu/(d1*e) //units in meter/sec
+vdal=jAl/(d2*e) //units in meter/sec
+printf("Drift speed of electrons in copper vdcu=%.6f meter/sec\n",vdcu)
+printf("Drift speed of electrons in Aluminium vdal=%.6f meter/sec\n",vdal)
diff --git a/3411/CH10/EX2.4.u2/Ex2_4_u2.txt b/3411/CH10/EX2.4.u2/Ex2_4_u2.txt
index f5fcfa2a5..973d4980a 100644
--- a/3411/CH10/EX2.4.u2/Ex2_4_u2.txt
+++ b/3411/CH10/EX2.4.u2/Ex2_4_u2.txt
@@ -1,5 +1,5 @@
-Current density in Copper is jcu=510867.72 A/met^2
-Current density in Aluminium is jal=264833.83 A/met^2
-Drift speed of electrons in copper vdcu=0.000038 met/sec
-Drift speed of electrons in Aluminium vdal=0.000009 met/sec
+Current density in Copper is jcu=510867.72 A/meter^2
+Current density in Aluminium is jal=264833.83 A/meter^2
+Drift speed of electrons in copper vdcu=0.000038 meter/sec
+Drift speed of electrons in Aluminium vdal=0.000009 meter/sec
\ No newline at end of file
diff --git a/3411/CH10/EX2.5.u2/Ex2_5_u2.sce b/3411/CH10/EX2.5.u2/Ex2_5_u2.sce
index f1ac48272..7e6d6b207 100644
--- a/3411/CH10/EX2.5.u2/Ex2_5_u2.sce
+++ b/3411/CH10/EX2.5.u2/Ex2_5_u2.sce
@@ -2,11 +2,11 @@
clc();
clear;
//To calculate the no of states for conduction electrons and the average energy interval
-n=9.11*10^-31
+n=9.11*10^-31 //units in Kg
E=5*1.6*10^-19 //units in J
-v=10^-6 //units in met^3
-h=6.67*10^-34
-NE=(8*sqrt(2)*%pi*n^1.5*E^0.5*v)/h^3 //units in /J
+v=10^-6 //units in meter^3
+h=6.67*10^-34 //units in m^2 kg s^-1
+NE=(8*sqrt(2)*%pi*n^1.5*E^0.5*v)/h^3 //units in J^-1
no=NE*0.01*1.6*10^-19 //units in J
printf("Available number of energy states is ")
disp(no)
diff --git a/3411/CH10/EX2.6.u2/Ex2_6_u2.sce b/3411/CH10/EX2.6.u2/Ex2_6_u2.sce
index 944aa7ed1..b4ceb4f23 100644
--- a/3411/CH10/EX2.6.u2/Ex2_6_u2.sce
+++ b/3411/CH10/EX2.6.u2/Ex2_6_u2.sce
@@ -2,9 +2,9 @@
clc();
clear;
//To calculate the fermi energy level
-h=4.14*10^-15
-n=8.49*10^28
-m=9.1*10^-31
+h=4.14*10^-15 //units in m^2 kg s^-1
+n=8.49*10^28 //units in m^-3
+m=9.1*10^-31 //units in Kgs
Ef=(h^2*(3*n)^0.666)/(8*m*(%pi)^0.666) //units in J
Ef=Ef*1.67*10^-19 //units in eV
printf("Fermi energy for copper is Ef=%.2f eV",Ef)
diff --git a/3411/CH10/EX2.7.u2/Ex2_7_u2.sce b/3411/CH10/EX2.7.u2/Ex2_7_u2.sce
index 21a1d3c04..fb986b06f 100644
--- a/3411/CH10/EX2.7.u2/Ex2_7_u2.sce
+++ b/3411/CH10/EX2.7.u2/Ex2_7_u2.sce
@@ -4,7 +4,7 @@ clear;
//To calculate the probability for a state
//When 0.1 eV above the fermi energy
e_ef=0.1 //units in eV
-kb=8.62*10^-5
+kb=8.62*10^-5 //units in eV/K
t=800 //units in kelvin
fE=1/(1+exp((e_ef)/(kb*t)))
printf("The probability of occupancy for a state whose energy is 0.1 eV above the fermi energy is f(E)=%.3f",fE)
diff --git a/3411/CH10/EX2.8.u2/Ex2_8_u2.sce b/3411/CH10/EX2.8.u2/Ex2_8_u2.sce
index bf0d8d95e..233443e73 100644
--- a/3411/CH10/EX2.8.u2/Ex2_8_u2.sce
+++ b/3411/CH10/EX2.8.u2/Ex2_8_u2.sce
@@ -5,21 +5,21 @@ clear;
fe=0.9
k=(1/fe)-1
logk=log(k)
-kb=8.62*10^-5
+kb=8.62*10^-5 //units in eV/K
t=1000 //units in K
E=logk*kb*t //units in eV
ef=7.06 //units in eV
energy=E+ef //units in eV
printf("The energy of this state is E=%.2f eV",energy)
-n=9.1*10^-31
+n=9.1*10^-31 //units in Kgs
EE=energy //units in eV
-h=4.14*10^-15
-ZE=(8*sqrt(2)*%pi*n^1.5*sqrt(EE))/h^3 //units in met^-3 (eV)^-1
-ZE=ZE*1.56*10^28 //units met^-3 (eV)^-1
+h=4.14*10^-15 //units in eV sec
+ZE=(8*sqrt(2)*%pi*n^1.5*sqrt(EE))/h^3 //units in meter^-3 (eV)^-1
+ZE=ZE*1.56*10^28 //units meter^-3 (eV)^-1
printf("\nThe density of the states for this energy is Z(E)=")
disp(ZE)
-printf("met^-3 (eV)^-1")
-ne=ZE*fe //units in met^-3 (eV)^-1
+printf("meter^-3 (eV)^-1")
+ne=ZE*fe //units in meter^-3 (eV)^-1
printf("\nThe population density for this energy is N(E)=")
disp(ne)
-printf("met^-3 (eV)^-1")
+printf("meter^-3 (eV)^-1")
diff --git a/3411/CH10/EX2.8.u2/Ex2_8_u2.txt b/3411/CH10/EX2.8.u2/Ex2_8_u2.txt
index b698f1946..b78fc6804 100644
--- a/3411/CH10/EX2.8.u2/Ex2_8_u2.txt
+++ b/3411/CH10/EX2.8.u2/Ex2_8_u2.txt
@@ -1,7 +1,7 @@
The energy of this state is E=6.87 eV
The density of the states for this energy is Z(E)=
1.778D+28
-met^-3 (eV)^-1
+meter^-3 (eV)^-1
The population density for this energy is N(E)=
1.600D+28
-met^-3 (eV)^-1 \ No newline at end of file
+meter^-3 (eV)^-1 \ No newline at end of file
diff --git a/3411/CH10/EX2.9.u2/Ex2_9_u2.sce b/3411/CH10/EX2.9.u2/Ex2_9_u2.sce
index d58809da2..a20787528 100644
--- a/3411/CH10/EX2.9.u2/Ex2_9_u2.sce
+++ b/3411/CH10/EX2.9.u2/Ex2_9_u2.sce
@@ -2,16 +2,16 @@
clc();
clear;
//To calculate the fermi energy and fermi factor
-ve=4*3
-v=4.05*10^-10
-n=ve/v^3 //units in met^-3
-h=4.14*10^-15
-m=9.1*10^-31
+ve=4*3 //No of Valence electrons
+v=4.05*10^-10 //units in meter^3
+n=ve/v^3 //units in meter^-3
+h=4.14*10^-15 //units in eV sec
+m=9.1*10^-31 //units in Kgs
Ef=(h^2*(3*n)^0.666)/(8*m*(%pi)^0.666) //units in J
Ef=Ef*1.67*10^-19 //units in eV
printf("Fermi energy is Ef=%.2f eV",Ef)
e_ef=0.1 //units in eV
-kb=8.62*10^-5
+kb=8.62*10^-5 //units in eV/K
t=300 //units in kelvin
fE=1/(1+exp((e_ef)/(kb*t)))
printf("\nFermi factor f(E) is %.4f",fE)
diff --git a/3411/CH13/EX5.2.u2/Ex5_2_u2.sce b/3411/CH13/EX5.2.u2/Ex5_2_u2.sce
index 66090bb4a..409f01372 100644
--- a/3411/CH13/EX5.2.u2/Ex5_2_u2.sce
+++ b/3411/CH13/EX5.2.u2/Ex5_2_u2.sce
@@ -2,8 +2,8 @@
clc();
clear;
//To calculate the maximum current density
-hc=7.9*10^3 //units in amp/met
-d=10^-3 //units in met
+hc=7.9*10^3 //units in amp/meter
+d=10^-3 //units in meter
ic=hc*%pi*d //units in amp
-critcurrentden=(ic*4)/(%pi*d^2) //units in amp/met^2
-printf("The critical current density is %d amp/met^2",critcurrentden)
+critcurrentden=(ic*4)/(%pi*d^2) //units in amp/meter^2
+printf("The critical current density is %d amp/meter^2",critcurrentden)
diff --git a/3411/CH13/EX5.2.u2/Ex5_2_u2.txt b/3411/CH13/EX5.2.u2/Ex5_2_u2.txt
index 35055b227..98e60dcef 100644
--- a/3411/CH13/EX5.2.u2/Ex5_2_u2.txt
+++ b/3411/CH13/EX5.2.u2/Ex5_2_u2.txt
@@ -1 +1 @@
-The critical current density is 31600000 amp/met^2 \ No newline at end of file
+The critical current density is 31600000 amp/meter^2 \ No newline at end of file
diff --git a/3411/CH13/EX5.3.u2/Ex5_3_u2.sce b/3411/CH13/EX5.3.u2/Ex5_3_u2.sce
index f4070f0bd..453b7563b 100644
--- a/3411/CH13/EX5.3.u2/Ex5_3_u2.sce
+++ b/3411/CH13/EX5.3.u2/Ex5_3_u2.sce
@@ -2,12 +2,12 @@
clc();
clear;
//To calculate the transition temprature and critical field
-hc1=1.4*10^5 //units in amp/met
-hc2=4.2*10^5 //units in amp/met
+hc1=1.4*10^5 //units in amp/meter
+hc2=4.2*10^5 //units in amp/meter
t1=14 //units in K
t2=13 //units in K
tc=sqrt((hc1*t2^2-hc2*t1^2)/(hc1-hc2)) //units in K
printf("Transition temprature is Tc=%.2f K",tc)
hc1_ho=1-(t1/tc)^2
-ho=hc1/hc1_ho //units in amps/met
-printf("Critical field Ho=%.1f amps/met",ho)
+ho=hc1/hc1_ho //units in amp/meter
+printf("\nCritical field Ho=%.1f amp/meter",ho)
diff --git a/3411/CH13/EX5.3.u2/Ex5_3_u2.txt b/3411/CH13/EX5.3.u2/Ex5_3_u2.txt
index 1705ad2e7..7f28974b7 100644
--- a/3411/CH13/EX5.3.u2/Ex5_3_u2.txt
+++ b/3411/CH13/EX5.3.u2/Ex5_3_u2.txt
@@ -1 +1,2 @@
-Transition temprature is Tc=14.47 KCritical field Ho=2172592.6 amps/met \ No newline at end of file
+Transition temprature is Tc=14.47 K
+Critical field Ho=2172592.6 amp/meter \ No newline at end of file
diff --git a/3411/CH14/EX6.1.u2/Ex6_1_u2.sce b/3411/CH14/EX6.1.u2/Ex6_1_u2.sce
index 7932cfea2..42c08fa8b 100644
--- a/3411/CH14/EX6.1.u2/Ex6_1_u2.sce
+++ b/3411/CH14/EX6.1.u2/Ex6_1_u2.sce
@@ -2,8 +2,8 @@
clc();
clear;
//To calculate the di-electric constant
-eo=8.85*10^-12 //units in F/met
-alphae=36*10^-40 //units in met^3
-n=5*10^28 //units in met^-3
+eo=8.85*10^-12 //units in F/meter
+alphae=36*10^-40 //units in meter^3
+n=5*10^28 //units in meter^-3
er=((30*eo)+(2*n*alphae))/((30*eo)-(n*alphae))
printf("The di-electric constant is er=%.2f",er)
diff --git a/3411/CH14/EX6.2.u2/Ex6_2_u2.sce b/3411/CH14/EX6.2.u2/Ex6_2_u2.sce
index 660d568da..6535ea984 100644
--- a/3411/CH14/EX6.2.u2/Ex6_2_u2.sce
+++ b/3411/CH14/EX6.2.u2/Ex6_2_u2.sce
@@ -2,10 +2,10 @@
clc();
clear;
//To calculate the atomic polarizability
-eo=8.85*10^-12
+eo=8.85*10^-12 //units in F/meter
er=1.000435
-n=2.7*10^25
-alpha=(eo*(er-1))/n //units in met^3
+n=2.7*10^25 //No of atoms/meter^3
+alpha=(eo*(er-1))/n //units in meter^3
printf("The atomic polarizability is aplha=")
disp(alpha)
-printf("met^3")
+printf("meter^3")
diff --git a/3411/CH14/EX6.2.u2/Ex6_2_u2.txt b/3411/CH14/EX6.2.u2/Ex6_2_u2.txt
index 4547772f8..e8f32fb3a 100644
--- a/3411/CH14/EX6.2.u2/Ex6_2_u2.txt
+++ b/3411/CH14/EX6.2.u2/Ex6_2_u2.txt
@@ -1,3 +1,2 @@
The atomic polarizability is aplha=
- 1.426D-40
-met^3 \ No newline at end of file
+ 1.426D-40 meter^3 \ No newline at end of file
diff --git a/3411/CH15/EX7.1.u2/Ex7_1_u2.sce b/3411/CH15/EX7.1.u2/Ex7_1_u2.sce
index a17e3227c..016f1977b 100644
--- a/3411/CH15/EX7.1.u2/Ex7_1_u2.sce
+++ b/3411/CH15/EX7.1.u2/Ex7_1_u2.sce
@@ -1,11 +1,13 @@
//Example 7_1_u2
clc();
clear;
-//To calculate the mean free path
-mn=0.26*0.91*10^-30
-un=1000*10^-4
-e=1.6*10^-19
-tc=(mn*un)/e
+//To calculate the mean free path and mean free time
+mn=0.26*0.91*10^-30 //units in Kgs
+un=1000*10^-4 //units in cm^2 V^-1 s^-1
+e=1.6*10^-19 //units in coulombs
+tc=(mn*un)/e //units in s
+tc1=tc*10^12 //units in ps
+printf("The mean free time is %.3fps",tc1)
vth=10^7
meanfreepath=vth*tc*10^7 //units in nm
-printf("The mean free path is given by L=%.1f nm",meanfreepath)
+printf("\nThe mean free path is given by L=%.1f nm",meanfreepath)
diff --git a/3411/CH15/EX7.1.u2/Ex7_1_u2.txt b/3411/CH15/EX7.1.u2/Ex7_1_u2.txt
index f153fb915..b7414acff 100644
--- a/3411/CH15/EX7.1.u2/Ex7_1_u2.txt
+++ b/3411/CH15/EX7.1.u2/Ex7_1_u2.txt
@@ -1 +1,2 @@
+The mean free time is 0.148ps
The mean free path is given by L=14.8 nm \ No newline at end of file
diff --git a/3411/CH15/EX7.2.u2/Ex7_2_u2.sce b/3411/CH15/EX7.2.u2/Ex7_2_u2.sce
index 2542b76ee..53ba64ccf 100644
--- a/3411/CH15/EX7.2.u2/Ex7_2_u2.sce
+++ b/3411/CH15/EX7.2.u2/Ex7_2_u2.sce
@@ -2,9 +2,9 @@
clc();
clear;
//To calculate the diffusion current density
-Dn=22.5
-e=1.6*10^-19 //units in eV
+Dn=22.5 //units in cm^2/sec
+e=1.6*10^-19 //units in coulombs
dn=(1*10^18)-(7*10^17)
-dx=0.1
+dx=0.1 //units in cm
Jndiff=e*Dn*(dn/dx) //units in A/cm^2
printf("The diffusion current density is Jn,diff=%.1f A/cm^2",Jndiff)
diff --git a/3411/CH15/EX7.3.u2/Ex7_3_u2.sce b/3411/CH15/EX7.3.u2/Ex7_3_u2.sce
index 13d6b26dd..f6ef6ccc5 100644
--- a/3411/CH15/EX7.3.u2/Ex7_3_u2.sce
+++ b/3411/CH15/EX7.3.u2/Ex7_3_u2.sce
@@ -3,9 +3,9 @@ clc();
clear;
//To find the drift velocity and diffusivity
vp=1/(100*10^-6) //units in cm/sec
-eapp=50
+eapp=50 //units in Volt cm^-1
up=vp/eapp //units in cm^-2 V^-1 s^-1
-k=0.0259
-dp=(k*up) //units in cm^2/s
+k=0.0259 //units in eV
+dp=(k*up) //units in cm^2 s^-1
printf("The drift velocity is Vp=%d cm/sec\n",vp)
printf("The diffusivity of minority carriers is Dp=%.2f cm^2/sec",dp)
diff --git a/3411/CH15/EX7.4.u2/Ex7_4_u2.sce b/3411/CH15/EX7.4.u2/Ex7_4_u2.sce
index 474d03e48..388285311 100644
--- a/3411/CH15/EX7.4.u2/Ex7_4_u2.sce
+++ b/3411/CH15/EX7.4.u2/Ex7_4_u2.sce
@@ -2,13 +2,14 @@
clc();
clear;
//To find the charge in the minority carrier concentration
-ni=9.65*10^9
-nno=10^14
+ni=9.65*10^9 //units in cm^-3
+nno=10^14 //units in cm^-3
//Before illumination
pno=ni^2/nno //units in cm^-3
//After illumination
-tp=2*10^-6
-gl=(10^13/10^-6)
+tp=2 //units in us
+tp=tp*10^-6 //units in sec
+gl=(10^13/10^-6) //units in No of electron hole pair for cm^-3
pn=pno+(tp*gl) //units in cm^-3
printf("Change in the minority carrier concentration is Pn=")
disp(pn)
diff --git a/3411/CH15/EX7.5.u2/Ex7_5_u2.sce b/3411/CH15/EX7.5.u2/Ex7_5_u2.sce
index cb96ea6fd..d5629a661 100644
--- a/3411/CH15/EX7.5.u2/Ex7_5_u2.sce
+++ b/3411/CH15/EX7.5.u2/Ex7_5_u2.sce
@@ -2,12 +2,14 @@
clc();
clear;
//To find the hall voltage
-e=1.6*10^-19 //units in eV
-n=10^16
-Rh=-1/(e*n)
-i=10^-3
-Bz=10^-4
-a=2.5*10^-3
-w=500*10^-4
-Vh=((Rh*i*Bz)/a)*w //units in mV
+e=1.6*10^-19 //units in coulombs
+n=10^16 //units in no of atoms for cm^-3
+Rh=-1/(e*n) //units in cm^3/C
+i=1 //units in milli amperes
+i=i*10^-3 //units in amperes
+Bz=10^-4 //units in wb/cm^2
+a=2.5*10^-3 //units in cm^2
+w=500*10^-4 //units in micro cm
+Vh=((Rh*i*Bz)/a)*w //units in V
+Vh=Vh*10^3 //units in mV
printf("The hall voltage is Vh=%.5f mV",Vh)
diff --git a/3411/CH15/EX7.5.u2/Ex7_5_u2.txt b/3411/CH15/EX7.5.u2/Ex7_5_u2.txt
index 7a73cdce7..3e77f26e6 100644
--- a/3411/CH15/EX7.5.u2/Ex7_5_u2.txt
+++ b/3411/CH15/EX7.5.u2/Ex7_5_u2.txt
@@ -1 +1 @@
-The hall voltage is Vh=-0.00125 mV \ No newline at end of file
+The hall voltage is Vh=-1.25000 mV \ No newline at end of file
diff --git a/3411/CH5/EX5.10.u1/Ex5_10_u1.sce b/3411/CH5/EX5.10.u1/Ex5_10_u1.sce
index 8689098f1..578eda983 100644
--- a/3411/CH5/EX5.10.u1/Ex5_10_u1.sce
+++ b/3411/CH5/EX5.10.u1/Ex5_10_u1.sce
@@ -2,13 +2,13 @@
clc();
clear;
//To calculate the lattice constant
-h=6.63*10^-34 //Plancks Constant
-m=1.804*10^-27
-KB=1.38*10^-23
-T=300
-lamda=h/sqrt(3*m*KB*T) //units in mts
+h=6.63*10^-34 //units in m^2 kg s^-1
+m=1.804*10^-27 //units in Kgs
+KB=1.38*10^-23 //units in m^2 kg s^-2 K^-1
+T=300 //units in K
+lamda=h/sqrt(3*m*KB*T) //units in meters
n=2
-a=(sqrt(3)*lamda)/2 //units in mts
+a=(sqrt(3)*lamda)/2 //units in meters
printf("Lattice constant a=");
disp(a);
-printf("mts")
+printf("meters")
diff --git a/3411/CH5/EX5.10.u1/Ex5_10_u1.txt b/3411/CH5/EX5.10.u1/Ex5_10_u1.txt
index dc254f563..5d5133ca9 100644
--- a/3411/CH5/EX5.10.u1/Ex5_10_u1.txt
+++ b/3411/CH5/EX5.10.u1/Ex5_10_u1.txt
@@ -1,3 +1,3 @@
Lattice constant a=
1.213D-10
-mts \ No newline at end of file
+meters \ No newline at end of file
diff --git a/3411/CH5/EX5.11.u1/Ex5_11_u1.sce b/3411/CH5/EX5.11.u1/Ex5_11_u1.sce
index e98d92ef0..264e905ef 100644
--- a/3411/CH5/EX5.11.u1/Ex5_11_u1.sce
+++ b/3411/CH5/EX5.11.u1/Ex5_11_u1.sce
@@ -2,6 +2,78 @@
clc();
clear;
//To determine the unitcell and its dimensions
+//Experimental data
+//We have relation sin^(theta)=(lamda/2*a)^2 and (h^2+k^2+l^2)=j*(lamda/2*a)^2
+theta21=12.1 //units in degrees
+theta22=17.1 //units in degrees
+theta23=21 //units in degrees
+theta24=24.3 //units in degrees
+theta25=27.2 //units in degrees
+theta26=29.9 //units in degrees
+theta28=34.7 //units in degrees
+theta29=36.9 //units in degrees
+theta210=38.9 //units in degrees
+theta211=40.9 //units in degrees
+theta212=42.8 //units in degrees
+theta1=theta21/2 //units in degrees
+theta2=theta22/2 //units in degrees
+theta3=theta23/2 //units in degrees
+theta4=theta24/2 //units in degrees
+theta5=theta25/2 //units in degrees
+theta6=theta26/2 //units in degrees
+theta8=theta28/2 //units in degrees
+theta9=theta29/2 //units in degrees
+theta10=theta210/2 //units in degrees
+theta11=theta211/2 //units in degrees
+theta12=theta212/2 //units in degrees
+//sin^2(theta) values
+sin1=(sin(theta1*%pi/180))^2
+sin2=(sin(theta2*%pi/180))^2
+sin3=(sin(theta3*%pi/180))^2
+sin4=(sin(theta4*%pi/180))^2
+sin5=(sin(theta5*%pi/180))^2
+sin6=(sin(theta6*%pi/180))^2
+sin8=(sin(theta8*%pi/180))^2
+sin9=(sin(theta9*%pi/180))^2
+sin10=(sin(theta10*%pi/180))^2
+sin11=(sin(theta11*%pi/180))^2
+sin12=(sin(theta12*%pi/180))^2
+//sin^2(theta)/0.0111 value
+temp1=sin1/sin1
+temp2=sin2/sin1
+temp3=sin3/sin1
+temp4=sin4/sin1
+temp5=sin5/sin1
+temp6=sin6/sin1
+temp8=sin8/sin1
+temp9=sin9/sin1
+temp10=sin10/sin1
+temp11=sin11/sin1
+temp12=sin12/sin1
+//(h,k,l) values are determined such that the sum h^2+k^2+l^2=temp value in that manner hence we have to select the (h,k,l) values
+//(h,k,l) values
+hkl1=100 //As h^2+k^2+l^2=1
+hkl2=110 //As h^2+k^2+l^2=2
+hkl3=111 //As h^2+k^2+l^2=3
+hkl4=200 //As h^2+k^2+l^2=4
+hkl5=210 //As h^2+k^2+l^2=5
+hkl6=211 //As h^2+k^2+l^2=6
+hkl8=220 //As h^2+k^2+l^2=8
+hkl9=300 //As h^2+k^2+l^2=9
+hkl10=310 //As h^2+k^2+l^2=10
+hkl11=311 //As h^2+k^2+l^2=11
+hkl12=222 //As h^2+k^2+l^2=12
+printf("unit cell Dimensions when 2*theta=%.1f is (%d) where sin^2(theta)/0.0111 is %d\n",theta21,hkl1,temp1 )
+printf("unit cell Dimensions when 2*theta=%.1f is (%d) where sin^2(theta)/0.0111 is %.1f\n",theta22,hkl2,temp2 )
+printf("unit cell Dimensions when 2*theta=%.1f is (%d) where sin^2(theta)/0.0111 is %.1f\n",theta23,hkl3,temp3 )
+printf("unit cell Dimensions when 2*theta=%.1f is (%d) where sin^2(theta)/0.0111 is %.1f\n",theta24,hkl4,temp4 )
+printf("unit cell Dimensions when 2*theta=%.1f is (%d) where sin^2(theta)/0.0111 is%.1f\n",theta25,hkl5,temp5 )
+printf("unit cell Dimensions when 2*theta=%.1f is (%d) where sin^2(theta)/0.0111 is %.1f\n",theta26,hkl6,temp6 )
+printf("unit cell Dimensions when 2*theta=%.1f is (%d) where sin^2(theta)/0.0111 is %.1f\n",theta28,hkl8,temp8 )
+printf("unit cell Dimensions when 2*theta=%.1f is (%d) where sin^2(theta)/0.0111 is %.1f\n",theta29,hkl9,temp9 )
+printf("unit cell Dimensions when 2*theta=%.1f is (%d) where sin^2(theta)/0.0111 is %.1f\n",theta210,hkl10,temp10 )
+printf("unit cell Dimensions when 2*theta=%.1f is (%d) where sin^2(theta)/0.0111 is %.1f\n",theta211,hkl11,temp11 )
+printf("unit cell Dimensions when 2*theta=%.1f is (%d) where sin^2(theta)/0.0111 is %.1f\n",theta212,hkl12,temp12 )
lamda=71 //units in pm
-a=lamda/(2*sqrt(0.0111)) //units in pm
+a=lamda/(2*sqrt(sin1)) //units in pm
printf("The unitcell and its dimensions are %dpm",a)
diff --git a/3411/CH5/EX5.11.u1/Ex5_11_u1.txt b/3411/CH5/EX5.11.u1/Ex5_11_u1.txt
index d5e90c7e6..52c0e8f14 100644
--- a/3411/CH5/EX5.11.u1/Ex5_11_u1.txt
+++ b/3411/CH5/EX5.11.u1/Ex5_11_u1.txt
@@ -1 +1,12 @@
- The unitcell and its dimensions are 336pm \ No newline at end of file
+ unit cell Dimensions when 2*theta=12.1 is (100) where sin^2(theta)/0.0111 is 1
+unit cell Dimensions when 2*theta=17.1 is (110) where sin^2(theta)/0.0111 is 2.0
+unit cell Dimensions when 2*theta=21.0 is (111) where sin^2(theta)/0.0111 is 3.0
+unit cell Dimensions when 2*theta=24.3 is (200) where sin^2(theta)/0.0111 is 4.0
+unit cell Dimensions when 2*theta=27.2 is (210) where sin^2(theta)/0.0111 is5.0
+unit cell Dimensions when 2*theta=29.9 is (211) where sin^2(theta)/0.0111 is 6.0
+unit cell Dimensions when 2*theta=34.7 is (220) where sin^2(theta)/0.0111 is 8.0
+unit cell Dimensions when 2*theta=36.9 is (300) where sin^2(theta)/0.0111 is 9.0
+unit cell Dimensions when 2*theta=38.9 is (310) where sin^2(theta)/0.0111 is 10.0
+unit cell Dimensions when 2*theta=40.9 is (311) where sin^2(theta)/0.0111 is 11.0
+unit cell Dimensions when 2*theta=42.8 is (222) where sin^2(theta)/0.0111 is 12.0
+The unitcell and its dimensions are 336pm \ No newline at end of file
diff --git a/3411/CH5/EX5.12.u1/Ex5_12_u1.sce b/3411/CH5/EX5.12.u1/Ex5_12_u1.sce
index 35bb1c6fd..a07b9e963 100644
--- a/3411/CH5/EX5.12.u1/Ex5_12_u1.sce
+++ b/3411/CH5/EX5.12.u1/Ex5_12_u1.sce
@@ -2,13 +2,56 @@
clc();
clear;
//To determine the cubic structure of element and lattice constant and to identify element
-ratio=(sin(20*%pi/180)/sin(29*%pi/180))^2
+//Diffraction data
+theta21=40 //units in degrees
+theta22=58 //units in degrees
+theta23=73 //units in degrees
+theta24=86.8 //units in degrees
+theta25=100.4 //units in degrees
+theta26=114.7 //units in degrees
+theta1=theta21/2 //units in degrees
+theta2=theta22/2 //units in degrees
+theta3=theta23/2 //units in degrees
+theta4=theta24/2 //units in degrees
+theta5=theta25/2 //units in degrees
+theta6=theta26/2 //units in degrees
+//sin^2(theta) values
+sin1=(sin(theta1*%pi/180))^2
+sin2=(sin(theta2*%pi/180))^2
+sin3=(sin(theta3*%pi/180))^2
+sin4=(sin(theta4*%pi/180))^2
+sin5=(sin(theta5*%pi/180))^2
+sin6=(sin(theta6*%pi/180))^2
+//sin^2(theta)/0.111 value
+temp1=sin1/sin1
+temp2=sin2/sin1
+temp3=sin3/sin1
+temp4=sin4/sin1
+temp5=sin5/sin1
+temp6=sin6/sin1
+//(h,k,l) values are determined such that the sum h^2+k^2+l^2=temp value in that manner hence we have to select the (h,k,l) values
+//(h,k,l) values
+hkl1=100 //As h^2+k^2+l^2=1
+hkl2=110 //As h^2+k^2+l^2=2
+hkl3=111 //As h^2+k^2+l^2=3
+hkl4=200 //As h^2+k^2+l^2=4
+hkl5=210 //As h^2+k^2+l^2=5
+hkl6=211 //As h^2+k^2+l^2=6
+printf("unit cell Dimensions when 2*theta=%.1f is (%d) where sin^2(theta)/0.0111 is %d\n",theta21,hkl1,temp1 )
+printf("unit cell Dimensions when 2*theta=%.1f is (%d) where sin^2(theta)/0.0111 is %d\n",theta22,hkl2,temp2 )
+printf("unit cell Dimensions when 2*theta=%.1f is (%d) where sin^2(theta)/0.0111 is %d\n",theta23,hkl3,temp3 )
+printf("unit cell Dimensions when 2*theta=%.1f is (%d) where sin^2(theta)/0.0111 is %d\n",theta24,hkl4,temp4 )
+printf("unit cell Dimensions when 2*theta=%.1f is (%d) where sin^2(theta)/0.0111 is%d\n",theta25,hkl5,temp5 )
+printf("unit cell Dimensions when 2*theta=%.1f is (%d) where sin^2(theta)/0.0111 is %d\n",theta26,hkl6,temp6 )
+
+ratio=sin1/sin2
printf("The ratio of sin(theta)^2 values for first and second angles is %.2f\n Hence the crystal structure is bcc\n",ratio)
lamda=0.154 //units in nm
-h=1
-k=1
+//As we have used ratio of angles of 2*theta=40 degrees and 58 degrees above we use h=1,k=1,l=0 and a^2=(lamda/2)*sqrt(sqrt(h^2+k^2+l^2)/sin^2(theta))
+h=2
+k=0
l=0
theta=20 //units in degrees
a=(lamda/2)*(sqrt(sqrt(h^2+k^2+l^2)/sin(theta*(%pi/180))^2)) //units in nm
printf("Lattice constant a=%.3fnm \n And the element is tungsten Since Tungsten has lattice constant of %.3fnm and crystallizes in bcc structure",a,a)
-//Given in textbook lattice constant as a=0.318nm but the correct answer is a=0.268nm
+//Given in textbook to find lattice constant h=1,k=1,l=1 but the correct answer is h=2,k=0,l=0
diff --git a/3411/CH5/EX5.12.u1/Ex5_12_u1.txt b/3411/CH5/EX5.12.u1/Ex5_12_u1.txt
index 59d8efafb..1e2945a29 100644
--- a/3411/CH5/EX5.12.u1/Ex5_12_u1.txt
+++ b/3411/CH5/EX5.12.u1/Ex5_12_u1.txt
@@ -1,4 +1,10 @@
+unit cell Dimensions when 2*theta=40.0 is (100) where sin^2(theta)/0.0111 is 1
+unit cell Dimensions when 2*theta=58.0 is (110) where sin^2(theta)/0.0111 is 2
+unit cell Dimensions when 2*theta=73.0 is (111) where sin^2(theta)/0.0111 is 3
+unit cell Dimensions when 2*theta=86.8 is (200) where sin^2(theta)/0.0111 is 4
+unit cell Dimensions when 2*theta=100.4 is (210) where sin^2(theta)/0.0111 is5
+unit cell Dimensions when 2*theta=114.7 is (211) where sin^2(theta)/0.0111 is 6
The ratio of sin(theta)^2 values for first and second angles is 0.50
Hence the crystal structure is bcc
-Lattice constant a=0.268nm
- And the element is tungsten Since Tungsten has lattice constant of 0.268nm and crystallizes in bcc structure \ No newline at end of file
+Lattice constant a=0.318nm
+ And the element is tungsten Since Tungsten has lattice constant of 0.318nm and crystallizes in bcc structure \ No newline at end of file
diff --git a/3411/CH5/EX5.13.u1/Ex5_13_u1.sce b/3411/CH5/EX5.13.u1/Ex5_13_u1.sce
index a3dc6d537..c94889846 100644
--- a/3411/CH5/EX5.13.u1/Ex5_13_u1.sce
+++ b/3411/CH5/EX5.13.u1/Ex5_13_u1.sce
@@ -2,34 +2,74 @@
clc();
clear;
//To determine the crystal structure and indices of plane and lattice parameter of the material
-theta1=20.7
-peak1=sin((theta1/2)*%pi/180)^2/0.0308
-printf("Indices of the plane corresponding to peak 1 is %d\n",peak1)
-theta2=28.72
-peak2=sin((theta2/2)*%pi/180)^2/0.0308
-printf("Indices of the plane corresponding to peak 2 is %.1f\n",peak2)
-theta3=35.36
-peak3=sin((theta3/2)*%pi/180)^2/0.0308
-printf("Indices of the plane corresponding to peak 3 is %.1f\n",peak3)
-theta4=41.07
-peak4=sin((theta4/2)*%pi/180)^2/0.0308
-printf("Indices of the plane corresponding to peak 4 is %.1f\n",peak4)
-theta5=46.19
-peak5=sin((theta5/2)*%pi/180)^2/0.0308
-printf("Indices of the plane corresponding to peak 5 is %.1f\n",peak5)
-theta6=50.9
-peak6=sin((theta6/2)*%pi/180)^2/0.0308
-printf("Indices of the plane corresponding to peak 6 is %.1f\n",peak6)
-theta7=55.28
-peak7=sin((theta7/2)*%pi/180)^2/0.0308
-printf("Indices of the plane corresponding to peak 7 is %.1f\n",peak7)
-theta8=59.42
-peak8=sin((theta8/2)*%pi/180)^2/0.0308
-printf("Indices of the plane corresponding to peak 8 is %.1f\n",peak8)
+theta21=20.7 //units in degrees
+theta22=28.72 //units in degrees
+theta23=35.36 //units in degrees
+theta24=41.07 //units in degrees
+theta25=46.19 //units in degrees
+theta26=50.90 //units in degrees
+theta28=55.28 //units in degrees
+theta29=59.4 //units in degrees
+
+theta1=theta21/2 //units in degrees
+theta2=theta22/2 //units in degrees
+theta3=theta23/2 //units in degrees
+theta4=theta24/2 //units in degrees
+theta5=theta25/2 //units in degrees
+theta6=theta26/2 //units in degrees
+theta8=theta28/2 //units in degrees
+theta9=theta29/2 //units in degrees
+//sin^2(theta) values
+sin1=(sin(theta1*%pi/180))^2
+sin2=(sin(theta2*%pi/180))^2
+sin3=(sin(theta3*%pi/180))^2
+sin4=(sin(theta4*%pi/180))^2
+sin5=(sin(theta5*%pi/180))^2
+sin6=(sin(theta6*%pi/180))^2
+sin8=(sin(theta8*%pi/180))^2
+sin9=(sin(theta9*%pi/180))^2
+//sin^2(theta)/0.0308 values
+temp1=sin1/sin1
+temp2=sin2/sin1
+temp3=sin3/sin1
+temp4=sin4/sin1
+temp5=sin5/sin1
+temp6=sin6/sin1
+temp8=sin8/sin1
+temp9=sin9/sin1
+
+h2k2l21=temp1*2
+
+h2k2l22=temp2*2
+h2k2l23=temp3*2
+h2k2l24=temp4*2
+h2k2l25=temp5*2
+h2k2l26=temp6*2
+h2k2l28=temp8*2
+h2k2l29=temp9*2
+//(h,k,l) values are determined such that the sum h^2+k^2+l^2=temp value in that manner hence we have to select the (h,k,l) values
+//(h,k,l) values
+hkl1=110 //As h^2+k^2+l^2=2
+hkl2=200 //As h^2+k^2+l^2=4
+hkl3=211 //As h^2+k^2+l^2=6
+hkl4=220 //As h^2+k^2+l^2=8
+hkl5=310 //As h^2+k^2+l^2=10
+hkl6=232 //As h^2+k^2+l^2=12
+hkl8=321 //As h^2+k^2+l^2=14
+hkl9=400 //As h^2+k^2+l^2=16
+
+printf("unit cell Dimensions for peak 1 when 2*theta=%.1f is (%d) where sin^2(theta)/0.0308 is %.2f\n",theta21,hkl1,ceil(h2k2l21) )
+printf("unit cell Dimensions for peak 2 when 2*theta=%.1f is (%d) where sin^2(theta)/0.0308 is %.2f\n",theta22,hkl2,ceil(h2k2l22) )
+printf("unit cell Dimensions for peak 3 when 2*theta=%.1f is (%d) where sin^2(theta)/0.0308 is%.2f\n",theta23,hkl3,ceil(h2k2l23))
+printf("unit cell Dimensions for peak 4 when 2*theta=%.1f is (%d) where sin^2(theta)/0.0308 is %.2f\n",theta24,hkl4,ceil(h2k2l24))
+printf("unit cell Dimensions for peak 5 when 2*theta=%.1f is (%d) where sin^2(theta)/0.0308 is%.2f\n",theta25,hkl5,ceil(h2k2l25))
+printf("unit cell Dimensions for peak 6 when 2*theta=%.1f is (%d) where sin^2(theta)/0.0308 is%.2f\n",theta26,hkl6,ceil(h2k2l26))
+printf("unit cell Dimensions for peak 7 when 2*theta=%.1f is (%d) where sin^2(theta)/0.0308 is %.2f\n",theta28,hkl8,ceil(h2k2l28))
+printf("unit cell Dimensions for peak 8 when 2*theta=%.1f is (%d) where sin^2(theta)/0.0308 is %.2f\n",theta29,hkl9,ceil(h2k2l29))
+
printf("The material corresonds to bcc structure\n")
+//Consider peak no 8 where theta=29.71
lamda=0.07107 //units in nm
-theta=29.71 //units in degrees
-d400=lamda/(2*sin(theta*(%pi/180))) //units in nm
-hkl=16
-a=d400*sqrt(hkl) //units in nm
+d400=lamda/(2*sin(theta9*(%pi/180))) //units in nm
+a=d400*sqrt(ceil(h2k2l29)) //units in nm
printf("Lattice parameter of the material a=%.4fnm",a)
diff --git a/3411/CH5/EX5.13.u1/Ex5_13_u1.txt b/3411/CH5/EX5.13.u1/Ex5_13_u1.txt
index ca39815c5..01e496b7c 100644
--- a/3411/CH5/EX5.13.u1/Ex5_13_u1.txt
+++ b/3411/CH5/EX5.13.u1/Ex5_13_u1.txt
@@ -1,10 +1,10 @@
-Indices of the plane corresponding to peak 1 is 1
-Indices of the plane corresponding to peak 2 is 2.0
-Indices of the plane corresponding to peak 3 is 3.0
-Indices of the plane corresponding to peak 4 is 4.0
-Indices of the plane corresponding to peak 5 is 5.0
-Indices of the plane corresponding to peak 6 is 6.0
-Indices of the plane corresponding to peak 7 is 7.0
-Indices of the plane corresponding to peak 8 is 8.0
+unit cell Dimensions for peak 1 when 2*theta=20.7 is (110) where sin^2(theta)/0.0308 is 2
+unit cell Dimensions for peak 2 when 2*theta=28.7 is (200) where sin^2(theta)/0.0308 is 4.0
+unit cell Dimensions for peak 3 when 2*theta=35.4 is (211) where sin^2(theta)/0.0308 is 6.0
+unit cell Dimensions for peak 4 when 2*theta=41.1 is (220) where sin^2(theta)/0.0308 is 8.0
+unit cell Dimensions for peak 5 when 2*theta=46.2 is (310) where sin^2(theta)/0.0308 is10.0
+unit cell Dimensions for peak 6 when 2*theta=50.9 is (232) where sin^2(theta)/0.0308 is 12.0
+unit cell Dimensions for peak 7 when 2*theta=55.3 is (321) where sin^2(theta)/0.0308 is 14.0
+unit cell Dimensions for peak 8 when 2*theta=59.4 is (400) where sin^2(theta)/0.0308 is 15.94
The material corresonds to bcc structure
-Lattice parameter of the material a=0.2868nm \ No newline at end of file
+Lattice parameter of the material a=0.2863nm \ No newline at end of file
diff --git a/3411/CH5/EX5.14.u1/Ex5_14_u1.sce b/3411/CH5/EX5.14.u1/Ex5_14_u1.sce
index 847088d47..5c247d9c7 100644
--- a/3411/CH5/EX5.14.u1/Ex5_14_u1.sce
+++ b/3411/CH5/EX5.14.u1/Ex5_14_u1.sce
@@ -9,9 +9,9 @@ l=1
d=a/sqrt(h^2+k^2+l^2) //units in nm
theta=28.5 //units in degrees
lamda=2*d*sin(theta*(%pi/180)) //units in nm
-h=6.63*10^-34 //Plancks Constant
-m=1.67*10^-27
-KB=1.38*10^-23
-lamda=lamda*10^-9 //units in mts
-T=h^2/(3*m*KB*lamda^2)
+h=6.63*10^-34 //units in m^2 kg s^-1
+m=1.67*10^-27 //units in Kgs
+KB=1.38*10^-23 //units in m^2 kg s^-2 K^-1
+lamda=lamda*10^-9 //units in meters
+T=h^2/(3*m*KB*lamda^2) //units in K
printf("The effective temprature of neutrons is T=%dK",T)
diff --git a/3411/CH5/EX5.15.u1/Ex5_15_u1.sce b/3411/CH5/EX5.15.u1/Ex5_15_u1.sce
index 4030c57de..c3326bb73 100644
--- a/3411/CH5/EX5.15.u1/Ex5_15_u1.sce
+++ b/3411/CH5/EX5.15.u1/Ex5_15_u1.sce
@@ -2,10 +2,10 @@
clc();
clear;
//To calculate the Braggs angle
-h=6.63*10^-34 //Plancks Constant
-m=9.1*10^-31
-e=1.6*10^-19
-v=80
+h=6.63*10^-34 //units in m^2 kg s^-1
+m=9.1*10^-31 //units in Kgs
+e=1.6*10^-19 //units in coulombs
+v=80 //units in volts
lamda=h/sqrt(2*m*e*v) //units in mts
lamda=lamda*10^9 //units in nm
a=0.35 //units in nm
diff --git a/3411/CH5/EX5.16.u1/Ex5_16_u1.sce b/3411/CH5/EX5.16.u1/Ex5_16_u1.sce
index 98483f50c..d0535a5fd 100644
--- a/3411/CH5/EX5.16.u1/Ex5_16_u1.sce
+++ b/3411/CH5/EX5.16.u1/Ex5_16_u1.sce
@@ -2,8 +2,8 @@
clc();
clear;
//To calculate the difference between the samples
-d=0.2552
-a=d*sqrt(2)
+d=0.2552 //units in nm
+a=d*sqrt(2) //units in nm
lamda=0.152 //units in nm
theta=21 //units in degrees
//For sample A
@@ -11,14 +11,16 @@ d111=lamda/(2*sin(theta*%pi/180)) //units in nm
h=1
k=1
l=1
-a=d111*sqrt(h^2+k^2+l^2) //units in nm
-printf("For sample A a=%.4f nm",a)
+a1=d111*sqrt(h^2+k^2+l^2) //units in nm
+printf("For sample A a=%.4f nm",a1)
//For sample B
-theta=21.38
+theta=21.38 //units in degrees
d111=lamda/(2*sin(theta*%pi/180)) //units in nm
h=1
k=1
l=1
-a=d111*sqrt(h^2+k^2+l^2) //units in nm
-printf("\nFor sample B a=%.4f nm",a)
-printf("\n Sample B is pure high purity copper as lattice parameter of A is 1.75percent greater than that of pure copper")
+a2=d111*sqrt(h^2+k^2+l^2) //units in nm
+change=((a1-a2)/a2)*100
+printf("\nFor sample B a=%.4f nm",a2)
+printf("\n Sample B is pure high purity copper as lattice parameter of A is %.2f percent greater than that of pure copper",change)
+//Given in text book change in lattice parameter is 1.75% greater but it is 1.73%
diff --git a/3411/CH5/EX5.16.u1/Ex5_16_u1.txt b/3411/CH5/EX5.16.u1/Ex5_16_u1.txt
index 47695e7f2..d99dff05c 100644
--- a/3411/CH5/EX5.16.u1/Ex5_16_u1.txt
+++ b/3411/CH5/EX5.16.u1/Ex5_16_u1.txt
@@ -1,3 +1,3 @@
- For sample A a=0.3673 nm
+For sample A a=0.3673 nm
For sample B a=0.3611 nm
- Sample B is pure high purity copper as lattice parameter of A is 1.75percent greater than that of pure copper \ No newline at end of file
+ Sample B is pure high purity copper as lattice parameter of A is 1.73 percent greater than that of pure copper \ No newline at end of file
diff --git a/3411/CH5/EX5.9.u1/Ex5_9_u1.sce b/3411/CH5/EX5.9.u1/Ex5_9_u1.sce
index 7c8c82e26..b200c2b79 100644
--- a/3411/CH5/EX5.9.u1/Ex5_9_u1.sce
+++ b/3411/CH5/EX5.9.u1/Ex5_9_u1.sce
@@ -2,14 +2,14 @@
clc();
clear;
//To determine the interplanar spacing
-h=6.63*10^-34 //Plancks Constant
-m=9.1*10^-31
-e=1.6*10^-19
-v=844
-lamda=h/sqrt(2*m*e*v) //units in mts
+h=6.63*10^-34 //units in m^2 kg s^-1
+m=9.1*10^-31 //units in Kgs
+e=1.6*10^-19 //units in coulombs
+v=844 //units in Volts
+lamda=h/sqrt(2*m*e*v) //units in meters
n=1
theta=58 //units in degrees
-d=(n*lamda)/(2*sin(theta*(%pi/180))) //units in mts
+d=(n*lamda)/(2*sin(theta*(%pi/180))) //units in meters
printf("The interplanar spacing d=")
disp(d)
-printf("mts")
+printf("meters")
diff --git a/3411/CH5/EX5.9.u1/Ex5_9_u1.txt b/3411/CH5/EX5.9.u1/Ex5_9_u1.txt
index 05ff349b8..5a0c1075e 100644
--- a/3411/CH5/EX5.9.u1/Ex5_9_u1.txt
+++ b/3411/CH5/EX5.9.u1/Ex5_9_u1.txt
@@ -1,3 +1,3 @@
- The interplanar spacing d=
+The interplanar spacing d=
2.493D-11
-mts \ No newline at end of file
+meters \ No newline at end of file
diff --git a/3411/CH6/EX6.1.u1/Ex6_1_u1.sce b/3411/CH6/EX6.1.u1/Ex6_1_u1.sce
index e98cf65d8..0892939b0 100644
--- a/3411/CH6/EX6.1.u1/Ex6_1_u1.sce
+++ b/3411/CH6/EX6.1.u1/Ex6_1_u1.sce
@@ -2,10 +2,14 @@
clc();
clear;
//To calculate the Electric field of a laser beam
-i=10^-3/(3*10^-6) //units in W/mts^2
-c=3*10^8 //units in mts/sec
+power=1 //units in milli Watts
+power=power*10^-3 //units in Watts
+area=3 //units in milli meter^2
+area=area*10^-6 //units in meter^2
+i=power/area // units in Watts/meter^2
+c=3*10^8 //units in meter/sec
u=4*10^-7 //units in SI
n=1
-E0=sqrt((i*2*c*u)/n) //units in V/mts
+E0=sqrt((i*2*c*u)/n) //units in V/meters
printf("The electric field is E0=%.2f V/m",E0)
//In text book answer is given E0=501 V/m but the correct answer is E0=282.84 V/m
diff --git a/3411/CH6/EX6.2.u1/Ex6_2_u1.sce b/3411/CH6/EX6.2.u1/Ex6_2_u1.sce
index afbfbbcb0..4645a69a9 100644
--- a/3411/CH6/EX6.2.u1/Ex6_2_u1.sce
+++ b/3411/CH6/EX6.2.u1/Ex6_2_u1.sce
@@ -2,11 +2,13 @@
clc();
clear;
//To calculate the Electric field of a bulb
-w=10 //units in W
-i=(100*w)/(4*%pi*10^2) //Units in W/mts^2
-c=3*10^8 //units in mts/sec
+power=10 //units in Watts
+r=10 //units in meters
+area=4*%pi*r^2 //units in meter^2
+i=(100*power)/area //Units in Watt/meter^2
+c=3*10^8 //units in meter/sec
u=4*10^-7 //units in SI
n=1
-E0=sqrt((i*2*c*u)/n) //units in V/mts
-printf("The electric field of the bulb is E0=%.2f V/mts",E0)
+E0=sqrt((i*2*c*u)/n) //units in Volt/meter
+printf("The electric field of the bulb is E0=%.2f Volt/meters",E0)
//In text book answer is given E0=2.4 V/m but the correct answer is E0=13.82 V/m
diff --git a/3411/CH6/EX6.2.u1/Ex6_2_u1.txt b/3411/CH6/EX6.2.u1/Ex6_2_u1.txt
index b60f8fecc..4aaff8f76 100644
--- a/3411/CH6/EX6.2.u1/Ex6_2_u1.txt
+++ b/3411/CH6/EX6.2.u1/Ex6_2_u1.txt
@@ -1 +1 @@
-The electric field of the bulb is E0=13.82 V/mts \ No newline at end of file
+ The electric field of the bulb is E0=13.82 Volt/meters \ No newline at end of file
diff --git a/3411/CH6/EX6.3.u1/Ex6_3_u1.sce b/3411/CH6/EX6.3.u1/Ex6_3_u1.sce
index d84f3b174..e680471c3 100644
--- a/3411/CH6/EX6.3.u1/Ex6_3_u1.sce
+++ b/3411/CH6/EX6.3.u1/Ex6_3_u1.sce
@@ -2,11 +2,15 @@
clc();
clear;
//To calculate the electric field intensity a a point
-r=6*10^-6 //units in mts
-i=(1*10^-3)/(%pi*r^2) //units in W/met^2
-c=3*10^8 //units in mts/sec
+power=1 //units in milli Watts
+power=power*10^-3 //units in Watts
+r=6 //units in milli meters
+r=6*10^-6 //units in meters
+area=%pi*r^2 //units in meter^2
+i=power/area //units in Watt/meter^2
+c=3*10^8 //units in meter/sec
u=4*10^-7 //units in SI
n=1
-E=sqrt((i*2*c*u)/n) //units in V/mts
-printf("The electric field intensity a a point is given by E=%.2f V/mts",E)
+E=sqrt((i*2*c*u)/n) //units in Volt/meters
+printf("The electric field intensity a a point is given by E=%.2f Volt/meters",E)
//In text book answer is given E=8.1*10^4 V/m but the correct answer is E=46065.89 V/m
diff --git a/3411/CH6/EX6.3.u1/Ex6_3_u1.txt b/3411/CH6/EX6.3.u1/Ex6_3_u1.txt
index ff02857d9..a27640fdd 100644
--- a/3411/CH6/EX6.3.u1/Ex6_3_u1.txt
+++ b/3411/CH6/EX6.3.u1/Ex6_3_u1.txt
@@ -1 +1 @@
-The electric field intensity a a point is given by E=46065.89 V/mts \ No newline at end of file
+The electric field intensity a a point is given by E=46065.89 Volt/meters \ No newline at end of file
diff --git a/3411/CH6/EX6.4.u1/Ex6_4_u1.sce b/3411/CH6/EX6.4.u1/Ex6_4_u1.sce
index 4fd13fc06..c6a887e99 100644
--- a/3411/CH6/EX6.4.u1/Ex6_4_u1.sce
+++ b/3411/CH6/EX6.4.u1/Ex6_4_u1.sce
@@ -2,11 +2,12 @@
clc();
clear;
//To calculate the ratio of populations of two energy levels
-h=6.63*10^-34
-c=3*10^8
-lamda=694.3*10^-9
-kb=1.38*10^-23
-T=300
+h=6.63*10^-34 //units in m^2 kg s^-1
+c=3*10^8 //units in meter/sec
+lamda=694.3 //units in nm
+lamda=lamda*10^-9 //units in meters
+kb=1.38*10^-23 //units in m^2 kg s^-2 K^-1
+T=300 //units in K
n1_n2=exp((h*c)/(lamda*kb*T))
printf("The ratio of Populations of two energy levels is N1/N2=")
disp(n1_n2);
diff --git a/3411/CH6/EX6.5.u1/Ex6_5_u1.sce b/3411/CH6/EX6.5.u1/Ex6_5_u1.sce
index 28cf8571e..123f68d10 100644
--- a/3411/CH6/EX6.5.u1/Ex6_5_u1.sce
+++ b/3411/CH6/EX6.5.u1/Ex6_5_u1.sce
@@ -2,10 +2,10 @@
clc();
clear;
//To find the wavelength of the radiation emitted
-h=6.63*10^-34
-c=3*10^8
-kb=1.38*10^-23
-T=300
+h=6.63*10^-34 //units in m^2 kg s^-1
+c=3*10^8 //units in meter/sec
+kb=1.38*10^-23 //units in m^2 kg s^-2 K^-1
+T=300 //units in K
lamda=(h*c)/(kb*T) //units in microns
lamda=lamda*10^6 //units in micro meters
printf("The wavelength of the radiation emmitted is lamda=%.2f um",lamda)
diff --git a/3411/CH6/EX6.6.u1/Ex6_6_u1.sce b/3411/CH6/EX6.6.u1/Ex6_6_u1.sce
index 484d7eb5d..69fe8d9f0 100644
--- a/3411/CH6/EX6.6.u1/Ex6_6_u1.sce
+++ b/3411/CH6/EX6.6.u1/Ex6_6_u1.sce
@@ -2,11 +2,12 @@
clc();
clear;
//To calculate the ratio of stimulated emission to Spontaneous emission
-h=6.63*10^-34
-c=3*10^8
-lamda=694.3*10^-9
-kb=1.38*10^-23
-T=300
+h=6.63*10^-34 //units in m^2 kg s^-1
+c=3*10^8 //units in meter/sec
+lamda=694.3 //units in nm
+lamda=lamda*10^-9 //units in meters
+kb=1.38*10^-23 //units in m^2 kg s^-2 K^-1
+T=300 //units in K
constant=(h*c)/(lamda*kb*T)
R=1/(exp(constant)-1)
printf("The ratio of stimulated emission to Spontaneous emission is R=")
diff --git a/3411/CH6/EX6.7.u1/Ex6_7_u1.sce b/3411/CH6/EX6.7.u1/Ex6_7_u1.sce
index a6232e7df..9ae0802d7 100644
--- a/3411/CH6/EX6.7.u1/Ex6_7_u1.sce
+++ b/3411/CH6/EX6.7.u1/Ex6_7_u1.sce
@@ -2,10 +2,11 @@
clc();
clear;
//To calculate the no of photons emitted by the ruby laser
-p=1 //units in W
-lamda=694.3*10^-9
-h=6.63*10^-34
-c=3*10^8
+p=1 //units in Watts
+lamda=694.3 //units in nm
+lamda=lamda*10^-9 //units in meters
+h=6.63*10^-34 //units in m^2 kg s^-1
+c=3*10^8 //units in meter/sec
n=(p*lamda)/(h*c)
printf("The no of photons emitted by the ruby laser is n=")
disp(n)
diff --git a/3411/CH7/EX7.2.u1/Ex7_2_u1.sce b/3411/CH7/EX7.2.u1/Ex7_2_u1.sce
index fdd33448f..310e4396b 100644
--- a/3411/CH7/EX7.2.u1/Ex7_2_u1.sce
+++ b/3411/CH7/EX7.2.u1/Ex7_2_u1.sce
@@ -2,12 +2,13 @@
clc();
clear;
//To find the fraction of initial intensity
-alpha=-2.2
-l=2 //units in KM
-//Case (a) when L=2
+alpha=-2.2 //units in db/Kilo meters
+//When l=2 Kilo meters
+l=2 //units in Kilo meters
+//Case (a) when L=2 Kilo meters
It_I0=10^(alpha*l/10)
printf("The fraction of initial intensity left when L=2 It/I0=%.3f\n",It_I0)
-//Case (b) when L=6
-l=6 //units in KM
+//Case (b) when L=6 Kilo meters
+l=6 //units in Kilo meters
It_I0=10^(alpha*l/10)
printf("The fraction of initial intensity left when L=6 It/I0=%.3f\n",It_I0)
diff --git a/3411/CH9/EX1.1.u2/Ex1_1_u2.sce b/3411/CH9/EX1.1.u2/Ex1_1_u2.sce
index ed99eb811..ab46d3d45 100644
--- a/3411/CH9/EX1.1.u2/Ex1_1_u2.sce
+++ b/3411/CH9/EX1.1.u2/Ex1_1_u2.sce
@@ -3,18 +3,19 @@ clc();
clear;
//To calculate energy momentum and the probability of of finding the particle
n=3
-h=6.63*10^-34
-m=1.67*10^-27
-l=0.1*10^-9
+h=6.63*10^-34 //units in m^2 kg s^-1
+m=1.67*10^-27 //units in Kgs
+l=0.1 //units in nm
+l=l*10^-9 //units in meters
e=(n^2*h^2)/(8*m*l^2) //units in joules
printf("The energy of the particle is E=")
disp(e)
printf("Joules")
-lamda=(2*l)/n //units in mts
-lamda=6.6*10^-11 //units in mts
-p=h/lamda //units in Kg mts^-1
+lamda=(2*l)/n //units in meters
+lamda=6.6*10^-11 //units in meters
+p=h/lamda //units in Kg meter s^-1
printf("\nMomentum is p=")
disp(p)
-printf("Kg ms^-1")
+printf("Kg meter s^-1")
prob=((1/3)-0)
printf("\nThe probability of finding the particle is =%.2f",prob)
diff --git a/3411/CH9/EX1.1.u2/Ex1_1_u2.txt b/3411/CH9/EX1.1.u2/Ex1_1_u2.txt
index 614ec0071..6c7856ea1 100644
--- a/3411/CH9/EX1.1.u2/Ex1_1_u2.txt
+++ b/3411/CH9/EX1.1.u2/Ex1_1_u2.txt
@@ -1,5 +1,5 @@
The energy of the particle is E=
- 2.961D-20 Joules
+ 2.961D-20 Joules
Momentum is p=
- 1.005D-23 Kg ms^-1
+ 1.005D-23 Kg meter s^-1
The probability of finding the particle is =0.33 \ No newline at end of file
diff --git a/3411/CH9/EX1.2.u2/Ex1_2_u2.sce b/3411/CH9/EX1.2.u2/Ex1_2_u2.sce
index 2dbd6846b..572d1c785 100644
--- a/3411/CH9/EX1.2.u2/Ex1_2_u2.sce
+++ b/3411/CH9/EX1.2.u2/Ex1_2_u2.sce
@@ -2,10 +2,11 @@
clc();
clear;
//To calculate the wavelength of the radiation emitted
-h=6.63*10^-34
-m=9.1*10^-31
-l=10^-9
-c=3*10^8
-lamda=(8*m*c*l^2)/(27*h) //units in mts
+h=6.63*10^-34 //units in m^2 kg s^-1
+m=9.1*10^-31 //units in Kgs
+l=1 //units in nm
+l=l*10^-9 //units in meters
+c=3*10^8 //units in meters/sec
+lamda=(8*m*c*l^2)/(27*h) //units in meters
lamda=lamda*10^9 //units in nm
printf("The wavelength of the radiation is lamda=%.1fnm",lamda)
diff --git a/3411/CH9/EX1.3.u2/Ex1_3_u2.sce b/3411/CH9/EX1.3.u2/Ex1_3_u2.sce
index 694bb0345..0246037b9 100644
--- a/3411/CH9/EX1.3.u2/Ex1_3_u2.sce
+++ b/3411/CH9/EX1.3.u2/Ex1_3_u2.sce
@@ -2,9 +2,10 @@
clc();
clear;
//To calculate the uncertenity in momentum
-h=6.63e-34
-deltax=2*%pi*10^-9
-deltap=h/(2*deltax) //units in Kg ms^-1
+h=6.63e-34 //units in m^2 kg s^-1
+deltax=1 //units in nm
+deltax=deltax*10^-9 //units in meters
+deltap=h/(4*%pi*deltax) //units in Kg meter s^-1
printf("The uncertenity in momentum is delta p=")
disp(deltap)
printf("Kg ms^-1")
diff --git a/3411/CH9/EX1.4.u2/Ex1_4_u2.sce b/3411/CH9/EX1.4.u2/Ex1_4_u2.sce
index 58d1e65b1..40faa989f 100644
--- a/3411/CH9/EX1.4.u2/Ex1_4_u2.sce
+++ b/3411/CH9/EX1.4.u2/Ex1_4_u2.sce
@@ -2,9 +2,11 @@
clc();
clear;
//To find out the no of states that can accomodate
-h=6.63*10^-34
-m=9.1*10^-31
-l=0.5*10^-9
-v=15*1.6*10^-19
+h=6.63*10^-34 //units in m^2 kg s^-1
+m=9.1*10^-31 //units in Kgs
+l=0.5 //units in nm
+l=l*10^-9 //units in meters
+v=15 //units in eV
+v=v*1.6*10^-19 //units in Volts
nmax=(4*l*sqrt(m*v))/h
printf("The maximum quantum number possible is n=%d",nmax)