diff options
Diffstat (limited to '3369/CH16')
-rwxr-xr-x | 3369/CH16/EX16.1/Ex16_1.sce | 31 | ||||
-rwxr-xr-x | 3369/CH16/EX16.10/Ex16_10.sce | 24 | ||||
-rwxr-xr-x | 3369/CH16/EX16.11/Ex16_11.sce | 17 | ||||
-rwxr-xr-x | 3369/CH16/EX16.2/Ex16_2.sce | 28 | ||||
-rwxr-xr-x | 3369/CH16/EX16.3/Ex16_3.sce | 32 | ||||
-rwxr-xr-x | 3369/CH16/EX16.4/Ex16_4.sce | 29 | ||||
-rwxr-xr-x | 3369/CH16/EX16.5/Ex16_5.sce | 14 | ||||
-rwxr-xr-x | 3369/CH16/EX16.6/Ex16_6.sce | 33 | ||||
-rwxr-xr-x | 3369/CH16/EX16.7/Ex16_7.sce | 30 | ||||
-rwxr-xr-x | 3369/CH16/EX16.8/Ex16_8.sce | 24 | ||||
-rwxr-xr-x | 3369/CH16/EX16.9/Ex16_9.sce | 33 |
11 files changed, 295 insertions, 0 deletions
diff --git a/3369/CH16/EX16.1/Ex16_1.sce b/3369/CH16/EX16.1/Ex16_1.sce new file mode 100755 index 000000000..fa190e90d --- /dev/null +++ b/3369/CH16/EX16.1/Ex16_1.sce @@ -0,0 +1,31 @@ +//Chapter 16,Example 1, page 556 +//Determine the (a)ripple voltage (b)voltage drop (c)Average output volatge (d)ripple factor +clear +clc +I1 = 5*10^-3 // A +C2 = 0.05*10^-6 // F +C1 = 0.01*10^-6 // F +Vs = 100 // kV +f = 50 // Hz +// (a) Ripple voltage +printf("\n Part (a)") +delV = I1/(C2*f) +printf("\n Ripple Voltage = %f V", delV) +// (b) Voltage drop +printf("\n Part (b)") +Vd = I1/f*((1/C1)+(1/(2*C2))) +printf("\n Voltage drop = %f V", Vd) +// (c) Average output voltage +printf("\n Part (c)") +Vav = 2*Vs*sqrt(2)-Vd*10^-3 +printf("\n Average output voltage = %f kV", Vav) +// (d) Ripple factor +printf("\n Part (d)") +RF = Vd*10^-3/(2*Vs*sqrt(2)) +printf("\n Ripple Factor in percentage = %f", RF*100) + + + + + + diff --git a/3369/CH16/EX16.10/Ex16_10.sce b/3369/CH16/EX16.10/Ex16_10.sce new file mode 100755 index 000000000..486af2393 --- /dev/null +++ b/3369/CH16/EX16.10/Ex16_10.sce @@ -0,0 +1,24 @@ +//Chapter 16,Example 10,page 564 +//Determine the from and tail times +clear +clc +n = 12 +C1 = 0.125*10^-6/n // micro F +C2 = 0.001*10^-6 // micro F +R1 = 70*n // ohm +R2 = 400*n // ohm +// beased on figure 16.15 +theta = sqrt(C1*C2*R1*R2) +neta = 1/(1+R1/R2+C2/C1) +a = R2*C1/(2*theta*neta) // alpha +T2 = 7*theta*10^6 +T1 = T2/25 +printf("\n R1 = %f Ohm", R1) +printf("\n R2 = %f Ohm", R2) +printf("\n Theta = %f microS",theta*10^6) +printf("\n Neta = %f",neta) +printf("\n Alpha = %f ",a) +printf("\n T1 = %f microS", T1) +printf("\n T2 = %f microS", T2) + +// Answers greatly vary due to round off error diff --git a/3369/CH16/EX16.11/Ex16_11.sce b/3369/CH16/EX16.11/Ex16_11.sce new file mode 100755 index 000000000..19a900067 --- /dev/null +++ b/3369/CH16/EX16.11/Ex16_11.sce @@ -0,0 +1,17 @@ +//Chapter 16,Example 11,page 564 +//Determine the equation generated by impulse +clear +clc +w = 0.02*10^6 // s^-1 obtained by solving eq 16.47 iteratively +R = sqrt(4-(sqrt(8*8*4)*0.02)^2) // solved the simplified equation +L = 8*10^-6 +V = 25*10^3 +// In equation 16.46 +y = R/(2*L) +// Deriving the equation +a = V/(w*L) +printf("\n R = %e ohm",R) +printf("\n y = %e s^-1",y) +printf("\n I(t) = %e * exp(%et) * sin(%et) A",a,-y,w) + +// Answers may vary due to round off error diff --git a/3369/CH16/EX16.2/Ex16_2.sce b/3369/CH16/EX16.2/Ex16_2.sce new file mode 100755 index 000000000..6503ada92 --- /dev/null +++ b/3369/CH16/EX16.2/Ex16_2.sce @@ -0,0 +1,28 @@ +//Chapter 16,Example 2, page 556 +//Determine the (a)ripple voltage (b)voltage drop (c)Average output volatge (d)ripple factor +clear +clc +I1 = 5*10^-3 // A +C3 = 0.10*10^-6 // F +C2 = 0.05*10^-6 // F +C1 = 0.01*10^-6 // F +Vs = 100 // kV +f = 50 // Hz +// (a) Ripple voltage +printf("\n Part (a)") +delV = I1/f*((2/C1)+(1/C3)) +printf("\n Ripple Voltage = %f kV", delV*10^-3) +// (b) Voltage drop +printf("\n Part (b)") +Vd = I1/f*((1/C2)+(1/C1)+(1/(2*C3))) +printf("\n Voltage drop = %f kV", Vd*10^-3) +// (c) Average output voltage +printf("\n Part (c)") +Vav = 3*Vs*sqrt(2)-Vd*10^-3 +printf("\n Average output voltage = %f kV", Vav) +// (d) Ripple factor +printf("\n Part (d)") +RF = Vd*10^-3/(3*Vs*sqrt(2)) +printf("\n Ripple Factor in percentage = %f", RF*100) + +// Answers may vary due to round off error diff --git a/3369/CH16/EX16.3/Ex16_3.sce b/3369/CH16/EX16.3/Ex16_3.sce new file mode 100755 index 000000000..aa26bd30e --- /dev/null +++ b/3369/CH16/EX16.3/Ex16_3.sce @@ -0,0 +1,32 @@ +//Chapter 16,Example 3, page 557 +//Determine the (a)ripple voltage (b)voltage drop (c)Average output volatge (d)ripple factor (e)optimum number of stages +clear +clc +I1 = 5*10^-3 // A +C = 0.15*10^-6 // F +Vs = 200 // kV +f = 50 // Hz +n = 12 +// (a) Ripple voltage +printf("\n Part (a)") +delV = I1*n*(n+1)/(f*C*2) +printf("\n Ripple Voltage = %f kV", delV*10^-3) +// (b) Voltage drop +printf("\n Part (b)") +a = I1/(f*C) +Vd = a*((2/3*n^3)+(n^2/2)-(n/6)+(n*(n+1)/4)) +printf("\n Voltage drop = %f kV", Vd*10^-3) +// (c) Average output voltage +printf("\n Part (c)") +Vav = 2*n*Vs*sqrt(2)-Vd*10^-3 +printf("\n Average output voltage = %f kV", Vav) +// (d) Ripple factor +printf("\n Part (d)") +RF = Vd*10^-3/(2*n*Vs*sqrt(2)) +printf("\n Ripple Factor in percentage = %f", RF*100) +// (e) Optimum number of stages +printf("\n Part (e)") +nopt = sqrt(Vs*sqrt(2)*10^3*f*C/I1) +printf("\n Optimum number of stages = %d stages", nopt) + +// Answers may vary due to round off error diff --git a/3369/CH16/EX16.4/Ex16_4.sce b/3369/CH16/EX16.4/Ex16_4.sce new file mode 100755 index 000000000..3ae18c2a6 --- /dev/null +++ b/3369/CH16/EX16.4/Ex16_4.sce @@ -0,0 +1,29 @@ +//Chapter 16,Example 4, page 558 +//Determine the input voltage and power +clear +clc +Vc = 500*10^3 // V +A = 4 // A +Xl = 8/100 // in percentage +kV = 250 +Xc = Vc/A // Reactance of the cable +XL = Xl*(kV**2/100)*10**3 // Leakage reactance of the transformer +Radd = Xc-XL // Additional series reactance +Ind = Radd/(2*%pi*XL) // Inductance of required series inductor +R = 3.5/100*(kV**2/100)*10**3 // Total circuit resistance +Imax = 100/250 // maximum current that can be supplied by the transformer +Vex = Imax*R // Exciting voltage of transformer secondary +Vin = Vex*220/kV // Input voltage of transformer primary +P = Vin*100/220 // Input power of the transformer +printf("\n Reactance of the cable = %f k ohm", Xc*10^-3) +printf("\n Leakage reactance of the transformer = %f k ohm", XL*10^-3) +printf("\n Additional series reactance = %f k ohm", Radd*10^-3) +printf("\n Inductance of required series inductor = %f H", Ind*10^3) +printf("\n Total circuit resistance = %f k ohm", R*10^-3) +printf("\n maximum current that can be supplied by the transformer = %f A", Imax) +printf("\n Exciting voltage of transformer secondary = %f kV", Vex*10^-3) +printf("\n Input voltage of transformer primary = %f V", Vin*10^-3) +printf("\n Input power of the transformer = %f kW", P*10^-3) + +// Answers may vary due to round off error + diff --git a/3369/CH16/EX16.5/Ex16_5.sce b/3369/CH16/EX16.5/Ex16_5.sce new file mode 100755 index 000000000..a72530af7 --- /dev/null +++ b/3369/CH16/EX16.5/Ex16_5.sce @@ -0,0 +1,14 @@ +//Chapter 16,Example 5,page 559 +//Determine the charging current and potential difference +clear +clc +ps = 0.5*10**-6 // C/m^2 +u = 10 // m/s +w = 0.1 // m +I = ps*u*w +Rl = 10^14 // ohm +V = I*Rl*10^-6 +printf("\n Charging current= %f micro A", I*10^6) +printf("\n Potential difference = %f MV", V) + +// Answers may vary due to round off error diff --git a/3369/CH16/EX16.6/Ex16_6.sce b/3369/CH16/EX16.6/Ex16_6.sce new file mode 100755 index 000000000..e546e1992 --- /dev/null +++ b/3369/CH16/EX16.6/Ex16_6.sce @@ -0,0 +1,33 @@ +//Chapter 16,Example 6,page 560 +//Determine the wave generated +clear +clc +// With refrence to table 16.1 +C1 = 0.125*10^-6 // F +C2 = 1*10^-9 // F +R1 = 360 // ohm +R2 = 544 // ohm +V0 = 100 // kV +theta = sqrt(C1*C2*R1*R2) +neta = 1/(1+(1+R1/R2)*C2/C1) +alpha = R2*C1/(2*theta*neta) +printf("\n Theta = %f micro S",theta*10^6) +printf("\n Neta = %f",neta) +printf("\n Alpha = %f ",alpha) +// Coresponding to alpha the following can be deduced from Fig 16.12 +T2 = 10.1*theta*10^6 +T1 = T2/45 +imp = T1/T2 // generated lighting impulse +// From equations 16.41 and 16.42 +a1 = (alpha-sqrt(alpha^2-1))*10^-6/(theta) +a2 = (alpha+sqrt(alpha^2-1))*10^-6/theta +printf("\n T1 = %f microS", T1) +printf("\n T2 = %f microS", T2) +printf("\n Generated lighting impulse = %e wave", imp) +printf("\n alpha1 = %f microS", a1) +printf("\n alpha2 = %f microS", a2) +// According to equation 16.40 +et = neta*(alpha*V0)/sqrt(alpha^2-1) +printf("\n e(t) = %f * (e^%ft - f^%ft)",et,-a1,-a2) // Equation of the wave form generated by the impulese + +//Answers may vary due to round off error diff --git a/3369/CH16/EX16.7/Ex16_7.sce b/3369/CH16/EX16.7/Ex16_7.sce new file mode 100755 index 000000000..2e4321658 --- /dev/null +++ b/3369/CH16/EX16.7/Ex16_7.sce @@ -0,0 +1,30 @@ +//Chapter 16,Example 6,page 561 +//Determine the wave generated +clear +clc +C1 = 0.125*10^-6 // F +C2 = 1*10^-9 // F +R1 = 360 // ohm +R2 = 544 // ohm +V0 = 100 // kV +theta = sqrt(C1*C2*R1*R2) +neta = 1/(1+R1/R2+C2/C1) +alpha = R2*C1/(2*theta*neta) +printf("\n Theta = %f micro S",theta*10^6) +printf("\n Neta = %f",neta) +printf("\n Alpha = %f ",alpha) +// Coresponding to alpha the following can be deduced from Fig 16.12 +T2 = 16.25*theta*10^6 +T1 = T2/120 +// From equations 16.41 and 16.42 +a1 = (alpha-sqrt(alpha^2-1))*10^-6/(theta) +a2 = (alpha+sqrt(alpha^2-1))*10^-6/theta +printf("\n T1 = %f microS", T1) // Answer given in the text is wrong +printf("\n T2 = %f microS", T2) +printf("\n alpha1 = %f microS", a1) +printf("\n alpha2 = %f microS", a2) +// According to equation 16.40 +et = neta*(alpha*V0)/sqrt(alpha^2-1) +printf("\n e(t) = %f * (e^%ft - f^%ft)",et,-a1,-a2) // Equation of the wave form generated by the impulese + +//Answers may vary due to round off error diff --git a/3369/CH16/EX16.8/Ex16_8.sce b/3369/CH16/EX16.8/Ex16_8.sce new file mode 100755 index 000000000..94475426e --- /dev/null +++ b/3369/CH16/EX16.8/Ex16_8.sce @@ -0,0 +1,24 @@ +//Chapter 16,Example 8,page 562 +//Determine the circuit efficiency +clear +clc +C1 = 0.125*10^-6 // F +C2 = 1*10^-9 // F +T2 = 2500 +T1 = 250 +// Bsaed on Figure 16.12 +T2T1 = T2/T1 +a = 4 // alpha +theta = T2/6 +// From table 16.1 +X = (1/a^2)*(1+C2/C1) +R1 = (a*theta*10^-6/C2)*(1-sqrt(1-X)) +R2 = (a*theta*10^-6/(C1+C2))*(1+sqrt(1-X)) +neta = 1/(1+(1+R1/R2)*C2/C1) +printf("\n Theta = %f micro S", theta) +printf("\n X = %f ", X) +printf("\n R1 = %f k Ohm", R1*10^-3) +printf("\n R2 = %f k Ohm", R2*10^-3) +printf("\n neta = %f ", neta) + +// Answers may vary due to round off error diff --git a/3369/CH16/EX16.9/Ex16_9.sce b/3369/CH16/EX16.9/Ex16_9.sce new file mode 100755 index 000000000..6b63423ea --- /dev/null +++ b/3369/CH16/EX16.9/Ex16_9.sce @@ -0,0 +1,33 @@ +//Chapter 16,Example 9,page 563 +//Determine the maximum output voltage and energy rating +clear +clc +n = 8 +C1 = 0.16/n // micro F +C2 = 0.001 // micro F +T2 = 50 +T1 = 1.2 +// beased on figure 16.12 +a = 6.4 // alpha +theta = T2/9.5 +X = (1/a^2)*(1+C2/C1) +R1 = (a*theta*10^-6/C2)*(1-sqrt(1-X)) +R2 = (a*theta*10^-6/(C1+C2))*(1+sqrt(1-X)) +R1n = R1/n +R2n = R2/n +V0 = n*120 +neta = 1/(1+(1+R1/R2)*C2/C1) +V = neta*V0 +E = 1/2*C1*V0^2 +printf("\n Theta = %f micro S", theta) +printf("\n X = %f ", X) +printf("\n V0 = %f ", V0) +printf("\n R1 = %f Ohm", R1*10^6) +printf("\n R2 = %f Ohm", R2*10^6) +printf("\n R1/n = %d Ohm", R1n*10^6) +printf("\n R2/n = %d Ohm", R2n*10^6) +printf("\n neta = %f ", neta) +printf("\n Maximum output voltage = %f kV", V) +printf("\n Energy rating = %f J", E) + +// Answers greatly vary due to round off error |