summaryrefslogtreecommitdiff
path: root/3369/CH12
diff options
context:
space:
mode:
Diffstat (limited to '3369/CH12')
-rwxr-xr-x3369/CH12/EX12.1/Ex12_1.sce29
-rwxr-xr-x3369/CH12/EX12.10/Ex12_10.sce18
-rwxr-xr-x3369/CH12/EX12.2/Ex12_2.sce11
-rwxr-xr-x3369/CH12/EX12.3/Ex12_3.sce11
-rwxr-xr-x3369/CH12/EX12.4/Ex12_4.sce13
-rwxr-xr-x3369/CH12/EX12.5/Ex12_5.sce18
-rwxr-xr-x3369/CH12/EX12.6/Ex12_6.sce30
-rwxr-xr-x3369/CH12/EX12.7/Ex12_7.sce12
-rwxr-xr-x3369/CH12/EX12.8/Ex12_8.sce27
-rwxr-xr-x3369/CH12/EX12.9/Ex12_9.sce26
10 files changed, 195 insertions, 0 deletions
diff --git a/3369/CH12/EX12.1/Ex12_1.sce b/3369/CH12/EX12.1/Ex12_1.sce
new file mode 100755
index 000000000..78ef92ed8
--- /dev/null
+++ b/3369/CH12/EX12.1/Ex12_1.sce
@@ -0,0 +1,29 @@
+//Chapter 12, Exmaple 1, page 403
+//Calculate radial thickness of insulating layer
+clc
+clear
+//based on equation 12.15 and v1alues of E1 and E2
+E1 = 40 // kV/cm
+E2 = 25 // kV/cm
+ep1 = 6 // permittives of the material
+ep2 = 4 //permittives of the material
+d1 = 4 // cm
+d2 = 10 // cm
+r1 = 2 // cm
+r2 = (E1*ep1*2)/(E2*ep2)
+inner = r2-(d1/2)
+outer = (d2/2)-r2
+//based on equation 12.16
+V1peak = E1*r1*log(r2/r1) // inner dielectric
+V2peak = E2*r2*log(d2/(2*r2)) // outter dielectric
+Vcab = V1peak+V2peak // Peak volatge of cable
+rms = Vcab/sqrt(2)
+printf("\n Radius = %f cm ",r2)
+printf("\n Inner radial thickness = %f cm ",inner)
+printf("\n Outer radial thickness = %f cm",outer)
+printf("\n Vpeak of outer dielectric = %f kV", V1peak)
+printf("\n Vpeak of inner dielectric = %f kV", V2peak)
+printf("\n Peak voltage of cable = %f kV", Vcab)
+printf("\n Safe opearating voltage = %f kV", rms)
+
+// Answers may vary due to round off error.
diff --git a/3369/CH12/EX12.10/Ex12_10.sce b/3369/CH12/EX12.10/Ex12_10.sce
new file mode 100755
index 000000000..7ffcb2f60
--- /dev/null
+++ b/3369/CH12/EX12.10/Ex12_10.sce
@@ -0,0 +1,18 @@
+//Chapter 12,Example 10, page 412
+//Determine the maximum stress
+clear
+clc
+a = 1 //cm
+r1 = 2 // cm
+b = 2.65 // cm
+er1 = 4.5
+er2 = 3.6
+V = 53.8 // kV
+ba = 5.3/2 // b/a
+alpha = 1.325
+E1max = V/(log(r1)+(er1/er2)*log(alpha))
+E2max = V/((r1*(er2/er1)*log(r1))+log(alpha))
+printf("\n E1max = %f kV/cm",E1max)
+printf("\n E2max = %f kV/cm",E2max) // answer vary from the text
+
+// Answer vary from the text due to round off
diff --git a/3369/CH12/EX12.2/Ex12_2.sce b/3369/CH12/EX12.2/Ex12_2.sce
new file mode 100755
index 000000000..4cc866adf
--- /dev/null
+++ b/3369/CH12/EX12.2/Ex12_2.sce
@@ -0,0 +1,11 @@
+//Chapter 12, Exmaple 2, page 404
+//Calculate optimum value of r
+clear
+clc
+//Based on equation 12.17
+V1 = 100 // kV
+V2 = 55 // kV
+r = V1*sqrt(2)/V2
+printf("\n Radius = %f cm ",r)
+
+// Answers may vary due to round off error
diff --git a/3369/CH12/EX12.3/Ex12_3.sce b/3369/CH12/EX12.3/Ex12_3.sce
new file mode 100755
index 000000000..0ad841adb
--- /dev/null
+++ b/3369/CH12/EX12.3/Ex12_3.sce
@@ -0,0 +1,11 @@
+//Chapter 12, Exmaple 3, page 406
+//Calculate resistivity
+clear
+clc
+l = 10^4 // cable length in m
+Rr = 3/1.5 // R/r ratio
+ins = 0.5*10**6 // insulation in ohms
+p = 2*%pi*l*ins/log(Rr)
+printf("\n Resistivity of insulation material = %e ohm/m ",p)
+
+// Answers may vary due to round off error
diff --git a/3369/CH12/EX12.4/Ex12_4.sce b/3369/CH12/EX12.4/Ex12_4.sce
new file mode 100755
index 000000000..22c60b7b0
--- /dev/null
+++ b/3369/CH12/EX12.4/Ex12_4.sce
@@ -0,0 +1,13 @@
+//Chapter 12, Exmaple 4, page 406
+//Calculate resistivity
+clear
+clc
+// Baased on Equation 12.1*10**2
+c4 = 0.5*10**2/10 // micro F
+Ic = 2*10**4*2*%pi*5*50*10**-6/sqrt(3)
+C = (sqrt(3)*10000*Ic)*(10**-9*10**6)
+printf("\n C4 = %f mircoF ",c4)
+printf("\n Line charging current = %f A ",Ic)
+printf("\n Charging = %f kVA ",C)
+
+// Answers may vary due to round off error
diff --git a/3369/CH12/EX12.5/Ex12_5.sce b/3369/CH12/EX12.5/Ex12_5.sce
new file mode 100755
index 000000000..bb084db23
--- /dev/null
+++ b/3369/CH12/EX12.5/Ex12_5.sce
@@ -0,0 +1,18 @@
+//Chapter 12,Example 5, page 408
+//Calculate capasitance and kVAr
+clear
+clc
+//(a) Using the notations used in FiVgs. 12.15 and 12.16
+C2 = 0.75/3 // microF/km
+C3 = (0.6*3-2*C2)/2 // microF/km
+C4 = (C2+C3)/2 // microF/km
+printf("\n C2 = %f mircoF/Km ",C2)
+printf("\n C3 = %f mircoF/Km ",C3)
+printf("\n C4 = %f mircoF/Km ",C4)
+//(b)Capacitance of 10 km between 2 cores
+V = 33*10**3
+w = 2*%pi*50
+C = 2*V^2*w*C4*10*10**-9
+printf("\n Carging = %f kVAr ",C)
+
+// Answers may vary due to round of errors.
diff --git a/3369/CH12/EX12.6/Ex12_6.sce b/3369/CH12/EX12.6/Ex12_6.sce
new file mode 100755
index 000000000..c55cf9976
--- /dev/null
+++ b/3369/CH12/EX12.6/Ex12_6.sce
@@ -0,0 +1,30 @@
+//Chapter 12,Example 6, page 409
+//Determine the efective electrical parameters
+clear
+clc
+rc = 0.0875*(1+0.004*50) // conductor resistance in ohm/km
+Rc = 0.105*85 // ohm
+w = 2*%pi*50
+Rsh = 23.2*10**-6*85*10**5/(%pi*(3^2-2.5^2)) // Resistance of sheath
+D = 8
+rsh = 1/2*(2.5+3)
+Xm = w*2*log(D/rsh)*10**-7*85000
+Ref = Rc + Xm^2*Rsh/(Rsh^2+Xm^2) // Effective AC resistance
+Xc = 11.1// reactance with sheaths open-circuit
+Xef = Xc-(Xm^2/(Rsh^2+Xm^2)) //Effective reactance per cable
+SlCl = Rsh*Xm^2/(Rc*(Rsh^2+Xm^2)) // Sheath loss/conductor loss
+I = 400 // A
+emf = Xm*I // emf induced per sheath
+printf("\n Conductor resistance = %f ohm",rc)
+printf("\n Conductor resistance for the whole leangth (Rc) = %f ohm",Rc)
+printf("\n Resistance of sheath (Rsh) = %f ohm/Km ",Rsh)
+printf("\n Conductor to sheath mutual inductive reactance (Xm)= %f ohm/m ",Xm)
+printf("\n Effective AC resistance(Ref) = %f ohm ",Ref)
+printf("\n Reactance with sheaths open-circuit(Xc) = %f ohm ",Xc)
+printf("\n Effective reactance per cable(Xef) = %f ohm ",Xef)
+printf("\n Sheath loss/conductor loss = %f ",SlCl)
+printf("\n emf induced per sheath(emf) = %f V",emf)
+
+
+
+
diff --git a/3369/CH12/EX12.7/Ex12_7.sce b/3369/CH12/EX12.7/Ex12_7.sce
new file mode 100755
index 000000000..d21a8d60e
--- /dev/null
+++ b/3369/CH12/EX12.7/Ex12_7.sce
@@ -0,0 +1,12 @@
+//Chapter 12,Example 7, page 410
+//Determine the induced sheath voltage
+clear
+clc
+D = 15 // cm
+rsh = 5.5/2 // Sheath diameter converted to radius in cm
+I = 250 // A
+E = 2*10^-7*314*I*log(D/rsh)*10^3
+printf("\n Induced sheath voltage per Km = %f V/km",E)
+printf("\n If the sheaths are bonded at one end, the voltage between them at the other end = = %f V/km",E*sqrt(3))
+
+// Answers may vary due to round off errors.
diff --git a/3369/CH12/EX12.8/Ex12_8.sce b/3369/CH12/EX12.8/Ex12_8.sce
new file mode 100755
index 000000000..51caa1ce9
--- /dev/null
+++ b/3369/CH12/EX12.8/Ex12_8.sce
@@ -0,0 +1,27 @@
+//Chapter 12,Example 8, page 411
+//Determine the maximum stress
+clear
+clc
+ba = 5.3/2 // b/a
+alpha = nthroot(ba,3)
+r1 = 1.385 // cm
+r2 = 1.92 // cm
+r = 2.65 // cm
+V = 66*sqrt(2)/sqrt(3)
+V2 = V/(1+(1/alpha)+(1/alpha^2))
+V1 = (1+1/alpha)*V2
+//calculating maximim and minimum stress without sheaths
+Emax0 = V/1*log(r/1)
+Emin0 = V/(r*log(r))
+//calculating max and min stress with the sheaths
+Emax = Emax0*3/(1+(alpha)+(alpha^2))
+Emin = Emax/alpha
+printf("\n Peak voltage of the conductor V = %f kV",V)
+printf("\n V1 = %f kV",V1)
+printf("\n V2 = %f kV",V2)
+printf("\n Maximum stress without sheaths = %f kV/cm",Emax0)
+printf("\n Minimum stress without sheaths = %f kV/cm",Emin0)
+printf("\n Maximum stress with sheaths = %f kV/cm",Emax)
+printf("\n Minimum stress with sheaths = %f kV/cm",Emin)
+
+// Answers vary due to round off errors.
diff --git a/3369/CH12/EX12.9/Ex12_9.sce b/3369/CH12/EX12.9/Ex12_9.sce
new file mode 100755
index 000000000..2253390d9
--- /dev/null
+++ b/3369/CH12/EX12.9/Ex12_9.sce
@@ -0,0 +1,26 @@
+//Chapter 12,Example 9, page 412
+//Determine the maximum stress
+clear
+clc
+Emax = 47.5 // kV
+b = 2.65 // cm
+a = 1 // cm
+ba = 0.55*3 // 1/3(b-a)
+r1 = 1.55 // cm
+r2 = 2.1 // cm2Vr = 2.65 // cm
+V = 53.8 // kV
+alpha = nthroot(ba,3)
+// based on the example 12_8
+//calculating VEmax1, Emax2, Emax3
+x = 1/(a*log(r1/a))
+y = 1/(r1*log(r2/r1))
+z = 1/(r2*log(b/r2))
+VV1 = Emax/x
+V1V2 = Emax/y
+V2 = Emax/z
+V1 = V2+(Emax/y)
+printf("\n Emax = %f kV/cm",Emax)
+printf("\n V1 = %f kV/cm",V1)
+printf("\n V2 = %f kV/cm",V2)
+
+// Answers may vary due to round off error.