diff options
Diffstat (limited to '3369/CH12')
-rwxr-xr-x | 3369/CH12/EX12.1/Ex12_1.sce | 29 | ||||
-rwxr-xr-x | 3369/CH12/EX12.10/Ex12_10.sce | 18 | ||||
-rwxr-xr-x | 3369/CH12/EX12.2/Ex12_2.sce | 11 | ||||
-rwxr-xr-x | 3369/CH12/EX12.3/Ex12_3.sce | 11 | ||||
-rwxr-xr-x | 3369/CH12/EX12.4/Ex12_4.sce | 13 | ||||
-rwxr-xr-x | 3369/CH12/EX12.5/Ex12_5.sce | 18 | ||||
-rwxr-xr-x | 3369/CH12/EX12.6/Ex12_6.sce | 30 | ||||
-rwxr-xr-x | 3369/CH12/EX12.7/Ex12_7.sce | 12 | ||||
-rwxr-xr-x | 3369/CH12/EX12.8/Ex12_8.sce | 27 | ||||
-rwxr-xr-x | 3369/CH12/EX12.9/Ex12_9.sce | 26 |
10 files changed, 195 insertions, 0 deletions
diff --git a/3369/CH12/EX12.1/Ex12_1.sce b/3369/CH12/EX12.1/Ex12_1.sce new file mode 100755 index 000000000..78ef92ed8 --- /dev/null +++ b/3369/CH12/EX12.1/Ex12_1.sce @@ -0,0 +1,29 @@ +//Chapter 12, Exmaple 1, page 403 +//Calculate radial thickness of insulating layer +clc +clear +//based on equation 12.15 and v1alues of E1 and E2 +E1 = 40 // kV/cm +E2 = 25 // kV/cm +ep1 = 6 // permittives of the material +ep2 = 4 //permittives of the material +d1 = 4 // cm +d2 = 10 // cm +r1 = 2 // cm +r2 = (E1*ep1*2)/(E2*ep2) +inner = r2-(d1/2) +outer = (d2/2)-r2 +//based on equation 12.16 +V1peak = E1*r1*log(r2/r1) // inner dielectric +V2peak = E2*r2*log(d2/(2*r2)) // outter dielectric +Vcab = V1peak+V2peak // Peak volatge of cable +rms = Vcab/sqrt(2) +printf("\n Radius = %f cm ",r2) +printf("\n Inner radial thickness = %f cm ",inner) +printf("\n Outer radial thickness = %f cm",outer) +printf("\n Vpeak of outer dielectric = %f kV", V1peak) +printf("\n Vpeak of inner dielectric = %f kV", V2peak) +printf("\n Peak voltage of cable = %f kV", Vcab) +printf("\n Safe opearating voltage = %f kV", rms) + +// Answers may vary due to round off error. diff --git a/3369/CH12/EX12.10/Ex12_10.sce b/3369/CH12/EX12.10/Ex12_10.sce new file mode 100755 index 000000000..7ffcb2f60 --- /dev/null +++ b/3369/CH12/EX12.10/Ex12_10.sce @@ -0,0 +1,18 @@ +//Chapter 12,Example 10, page 412 +//Determine the maximum stress +clear +clc +a = 1 //cm +r1 = 2 // cm +b = 2.65 // cm +er1 = 4.5 +er2 = 3.6 +V = 53.8 // kV +ba = 5.3/2 // b/a +alpha = 1.325 +E1max = V/(log(r1)+(er1/er2)*log(alpha)) +E2max = V/((r1*(er2/er1)*log(r1))+log(alpha)) +printf("\n E1max = %f kV/cm",E1max) +printf("\n E2max = %f kV/cm",E2max) // answer vary from the text + +// Answer vary from the text due to round off diff --git a/3369/CH12/EX12.2/Ex12_2.sce b/3369/CH12/EX12.2/Ex12_2.sce new file mode 100755 index 000000000..4cc866adf --- /dev/null +++ b/3369/CH12/EX12.2/Ex12_2.sce @@ -0,0 +1,11 @@ +//Chapter 12, Exmaple 2, page 404 +//Calculate optimum value of r +clear +clc +//Based on equation 12.17 +V1 = 100 // kV +V2 = 55 // kV +r = V1*sqrt(2)/V2 +printf("\n Radius = %f cm ",r) + +// Answers may vary due to round off error diff --git a/3369/CH12/EX12.3/Ex12_3.sce b/3369/CH12/EX12.3/Ex12_3.sce new file mode 100755 index 000000000..0ad841adb --- /dev/null +++ b/3369/CH12/EX12.3/Ex12_3.sce @@ -0,0 +1,11 @@ +//Chapter 12, Exmaple 3, page 406 +//Calculate resistivity +clear +clc +l = 10^4 // cable length in m +Rr = 3/1.5 // R/r ratio +ins = 0.5*10**6 // insulation in ohms +p = 2*%pi*l*ins/log(Rr) +printf("\n Resistivity of insulation material = %e ohm/m ",p) + +// Answers may vary due to round off error diff --git a/3369/CH12/EX12.4/Ex12_4.sce b/3369/CH12/EX12.4/Ex12_4.sce new file mode 100755 index 000000000..22c60b7b0 --- /dev/null +++ b/3369/CH12/EX12.4/Ex12_4.sce @@ -0,0 +1,13 @@ +//Chapter 12, Exmaple 4, page 406 +//Calculate resistivity +clear +clc +// Baased on Equation 12.1*10**2 +c4 = 0.5*10**2/10 // micro F +Ic = 2*10**4*2*%pi*5*50*10**-6/sqrt(3) +C = (sqrt(3)*10000*Ic)*(10**-9*10**6) +printf("\n C4 = %f mircoF ",c4) +printf("\n Line charging current = %f A ",Ic) +printf("\n Charging = %f kVA ",C) + +// Answers may vary due to round off error diff --git a/3369/CH12/EX12.5/Ex12_5.sce b/3369/CH12/EX12.5/Ex12_5.sce new file mode 100755 index 000000000..bb084db23 --- /dev/null +++ b/3369/CH12/EX12.5/Ex12_5.sce @@ -0,0 +1,18 @@ +//Chapter 12,Example 5, page 408 +//Calculate capasitance and kVAr +clear +clc +//(a) Using the notations used in FiVgs. 12.15 and 12.16 +C2 = 0.75/3 // microF/km +C3 = (0.6*3-2*C2)/2 // microF/km +C4 = (C2+C3)/2 // microF/km +printf("\n C2 = %f mircoF/Km ",C2) +printf("\n C3 = %f mircoF/Km ",C3) +printf("\n C4 = %f mircoF/Km ",C4) +//(b)Capacitance of 10 km between 2 cores +V = 33*10**3 +w = 2*%pi*50 +C = 2*V^2*w*C4*10*10**-9 +printf("\n Carging = %f kVAr ",C) + +// Answers may vary due to round of errors. diff --git a/3369/CH12/EX12.6/Ex12_6.sce b/3369/CH12/EX12.6/Ex12_6.sce new file mode 100755 index 000000000..c55cf9976 --- /dev/null +++ b/3369/CH12/EX12.6/Ex12_6.sce @@ -0,0 +1,30 @@ +//Chapter 12,Example 6, page 409 +//Determine the efective electrical parameters +clear +clc +rc = 0.0875*(1+0.004*50) // conductor resistance in ohm/km +Rc = 0.105*85 // ohm +w = 2*%pi*50 +Rsh = 23.2*10**-6*85*10**5/(%pi*(3^2-2.5^2)) // Resistance of sheath +D = 8 +rsh = 1/2*(2.5+3) +Xm = w*2*log(D/rsh)*10**-7*85000 +Ref = Rc + Xm^2*Rsh/(Rsh^2+Xm^2) // Effective AC resistance +Xc = 11.1// reactance with sheaths open-circuit +Xef = Xc-(Xm^2/(Rsh^2+Xm^2)) //Effective reactance per cable +SlCl = Rsh*Xm^2/(Rc*(Rsh^2+Xm^2)) // Sheath loss/conductor loss +I = 400 // A +emf = Xm*I // emf induced per sheath +printf("\n Conductor resistance = %f ohm",rc) +printf("\n Conductor resistance for the whole leangth (Rc) = %f ohm",Rc) +printf("\n Resistance of sheath (Rsh) = %f ohm/Km ",Rsh) +printf("\n Conductor to sheath mutual inductive reactance (Xm)= %f ohm/m ",Xm) +printf("\n Effective AC resistance(Ref) = %f ohm ",Ref) +printf("\n Reactance with sheaths open-circuit(Xc) = %f ohm ",Xc) +printf("\n Effective reactance per cable(Xef) = %f ohm ",Xef) +printf("\n Sheath loss/conductor loss = %f ",SlCl) +printf("\n emf induced per sheath(emf) = %f V",emf) + + + + diff --git a/3369/CH12/EX12.7/Ex12_7.sce b/3369/CH12/EX12.7/Ex12_7.sce new file mode 100755 index 000000000..d21a8d60e --- /dev/null +++ b/3369/CH12/EX12.7/Ex12_7.sce @@ -0,0 +1,12 @@ +//Chapter 12,Example 7, page 410 +//Determine the induced sheath voltage +clear +clc +D = 15 // cm +rsh = 5.5/2 // Sheath diameter converted to radius in cm +I = 250 // A +E = 2*10^-7*314*I*log(D/rsh)*10^3 +printf("\n Induced sheath voltage per Km = %f V/km",E) +printf("\n If the sheaths are bonded at one end, the voltage between them at the other end = = %f V/km",E*sqrt(3)) + +// Answers may vary due to round off errors. diff --git a/3369/CH12/EX12.8/Ex12_8.sce b/3369/CH12/EX12.8/Ex12_8.sce new file mode 100755 index 000000000..51caa1ce9 --- /dev/null +++ b/3369/CH12/EX12.8/Ex12_8.sce @@ -0,0 +1,27 @@ +//Chapter 12,Example 8, page 411 +//Determine the maximum stress +clear +clc +ba = 5.3/2 // b/a +alpha = nthroot(ba,3) +r1 = 1.385 // cm +r2 = 1.92 // cm +r = 2.65 // cm +V = 66*sqrt(2)/sqrt(3) +V2 = V/(1+(1/alpha)+(1/alpha^2)) +V1 = (1+1/alpha)*V2 +//calculating maximim and minimum stress without sheaths +Emax0 = V/1*log(r/1) +Emin0 = V/(r*log(r)) +//calculating max and min stress with the sheaths +Emax = Emax0*3/(1+(alpha)+(alpha^2)) +Emin = Emax/alpha +printf("\n Peak voltage of the conductor V = %f kV",V) +printf("\n V1 = %f kV",V1) +printf("\n V2 = %f kV",V2) +printf("\n Maximum stress without sheaths = %f kV/cm",Emax0) +printf("\n Minimum stress without sheaths = %f kV/cm",Emin0) +printf("\n Maximum stress with sheaths = %f kV/cm",Emax) +printf("\n Minimum stress with sheaths = %f kV/cm",Emin) + +// Answers vary due to round off errors. diff --git a/3369/CH12/EX12.9/Ex12_9.sce b/3369/CH12/EX12.9/Ex12_9.sce new file mode 100755 index 000000000..2253390d9 --- /dev/null +++ b/3369/CH12/EX12.9/Ex12_9.sce @@ -0,0 +1,26 @@ +//Chapter 12,Example 9, page 412 +//Determine the maximum stress +clear +clc +Emax = 47.5 // kV +b = 2.65 // cm +a = 1 // cm +ba = 0.55*3 // 1/3(b-a) +r1 = 1.55 // cm +r2 = 2.1 // cm2Vr = 2.65 // cm +V = 53.8 // kV +alpha = nthroot(ba,3) +// based on the example 12_8 +//calculating VEmax1, Emax2, Emax3 +x = 1/(a*log(r1/a)) +y = 1/(r1*log(r2/r1)) +z = 1/(r2*log(b/r2)) +VV1 = Emax/x +V1V2 = Emax/y +V2 = Emax/z +V1 = V2+(Emax/y) +printf("\n Emax = %f kV/cm",Emax) +printf("\n V1 = %f kV/cm",V1) +printf("\n V2 = %f kV/cm",V2) + +// Answers may vary due to round off error. |