diff options
Diffstat (limited to '323/CH5')
-rwxr-xr-x | 323/CH5/EX5.1/ex5_1.sci | 9 | ||||
-rwxr-xr-x | 323/CH5/EX5.11/ex5_11.sci | 22 | ||||
-rwxr-xr-x | 323/CH5/EX5.12/ex5_12.sci | 30 | ||||
-rwxr-xr-x | 323/CH5/EX5.13/ex5_13.sci | 7 | ||||
-rwxr-xr-x | 323/CH5/EX5.15/ex5_15.sci | 20 | ||||
-rwxr-xr-x | 323/CH5/EX5.17/ex5_17.sci | 18 | ||||
-rwxr-xr-x | 323/CH5/EX5.18/ex5_18.sci | 15 | ||||
-rwxr-xr-x | 323/CH5/EX5.19/EX5_19.sci | 26 | ||||
-rwxr-xr-x | 323/CH5/EX5.2/ex5_2.sci | 5 | ||||
-rwxr-xr-x | 323/CH5/EX5.20/ex5_20.sci | 13 | ||||
-rwxr-xr-x | 323/CH5/EX5.21/ex5_21.sci | 13 | ||||
-rwxr-xr-x | 323/CH5/EX5.22/ex5_22.sci | 15 | ||||
-rwxr-xr-x | 323/CH5/EX5.23/ex5_23.sce | 11 | ||||
-rwxr-xr-x | 323/CH5/EX5.28/ex5_28.sci | 9 | ||||
-rwxr-xr-x | 323/CH5/EX5.3/ex5_3.sci | 12 | ||||
-rwxr-xr-x | 323/CH5/EX5.4/ex5_4.sci | 14 | ||||
-rwxr-xr-x | 323/CH5/EX5.5/ex5_5.sci | 15 | ||||
-rwxr-xr-x | 323/CH5/EX5.6/ex5_6.sci | 11 | ||||
-rwxr-xr-x | 323/CH5/EX5.7/ex5_7.sci | 13 | ||||
-rwxr-xr-x | 323/CH5/EX5.8/ex5_8.sci | 13 | ||||
-rwxr-xr-x | 323/CH5/EX5.9/ex5_9.sci | 6 |
21 files changed, 297 insertions, 0 deletions
diff --git a/323/CH5/EX5.1/ex5_1.sci b/323/CH5/EX5.1/ex5_1.sci new file mode 100755 index 000000000..f72889599 --- /dev/null +++ b/323/CH5/EX5.1/ex5_1.sci @@ -0,0 +1,9 @@ +//Chapter5,Ex5.1,Pg5.4
+clc;
+//(i)
+V2=110*110/220 // V2/V1 = E2/E1
+printf("\n V2=%.0f V \n",V2)
+//(ii)
+printf("\n V2=%.0f V \n",0)
+
+
diff --git a/323/CH5/EX5.11/ex5_11.sci b/323/CH5/EX5.11/ex5_11.sci new file mode 100755 index 000000000..4730dfb60 --- /dev/null +++ b/323/CH5/EX5.11/ex5_11.sci @@ -0,0 +1,22 @@ +//Chapter 5,Ex5.10,Pg5.13
+clc;
+E1=6600 //Primary voltage
+E2=400 //Secondary voltage
+R1=2.5 //Primary resistance
+X1=3.9 //Primary reactance
+X2=0.025 //Secondary reactance
+R2=0.01 //Secondary resistance
+K=E2/E1
+//Equivalent resistance referred to primary
+R01=R1+(R2/(K^2))
+printf("\n Equivalent resistance referred to primary=%.2f ohms \n",R01)
+//Equivalent reactance referred to primary
+X01=X1+(X2/(K^2))
+printf("\n Equivalent reactance referred to secondary =%.2f ohms \n",X01)
+//Equivalent resistance referred to secondary
+R02=R2+((K^2)*R1)
+printf("\n Equivalent resistance referred to secondary=%.2f ohms \n",R02)
+//Equivalent resistance referred to secondary
+X02=X2+((K^2)*X2)
+printf("\n Equivalent resistance referred to secondary=%.2f ohms \n",X02)
+
diff --git a/323/CH5/EX5.12/ex5_12.sci b/323/CH5/EX5.12/ex5_12.sci new file mode 100755 index 000000000..6d7466165 --- /dev/null +++ b/323/CH5/EX5.12/ex5_12.sci @@ -0,0 +1,30 @@ +//Chapter 5,Ex5.12,Pg5.14
+clc;
+E1=4400 //Primary EMF
+R1=3.45 //Primary resistance in ohms
+X1=5.2 //Primary reactance in ohms
+E2=220 //Secondary EMF
+R2=0.009 //Secondary resistance in ohms
+X2=0.015 //Secondary reactance in ohms
+K=E2/E1
+I1=50*1000/E1 //Using the formula I1=kVA rating*1000/E
+printf("\n Full load Primary current I1=%.2f A \n",I1)
+I2=50*1000/220
+printf("\n Full load secondary current I2=%.2f A \n",I2)
+R01=R1+(R2/(K*K))
+printf("\n Equivalent resistance referred to primary=%.2f ohms \n",R01)
+X01=X1+(X2/(K*K))
+printf("\n Equivalent reactance referred to primary =%.1f ohms \n",X01)
+Z01=sqrt((R01^2)+(X01*X01))
+printf("\n Equivalent impedance referred to primary=%.2f ohms \n",Z01)
+R02=(K^2)*R01
+printf("\n Equivalent resistance referred to secondary=%.2f ohms \n",R02)
+X02=(K^2)*X01
+printf("\n Equivalent reactance referred to secondary=%.3f ohms \n",X02)
+Z02=(K^2)*Z01
+printf("\n Equivalent impedance referred to secondary=%.2f ohms \n",Z02)
+CL1=(I1^2)*R1 + (I2^2)*R2
+printf("\n Copper losses with individual resistances=%.2f W \n",CL1)
+CL2=(I1^2)*R01
+printf("\n Copper loss with equivalent resistances=%.1f W \n",CL2)
+
diff --git a/323/CH5/EX5.13/ex5_13.sci b/323/CH5/EX5.13/ex5_13.sci new file mode 100755 index 000000000..73ff83543 --- /dev/null +++ b/323/CH5/EX5.13/ex5_13.sci @@ -0,0 +1,7 @@ +//Chapter 5,Ex5.13,Pg5.17
+clc;
+E2=440 //Secondary voltage
+V2=400 //voltage at full load
+//Given that power factor=0.8(lagging)
+percentreg=((E2-V2)/E2)*100
+printf("\n Percentage regulation=%.2f percent\n",percentreg)
diff --git a/323/CH5/EX5.15/ex5_15.sci b/323/CH5/EX5.15/ex5_15.sci new file mode 100755 index 000000000..795fdb806 --- /dev/null +++ b/323/CH5/EX5.15/ex5_15.sci @@ -0,0 +1,20 @@ +//Chapter 5,Ex5.16,Pg5.18
+clc;
+//Let x=cos(phi) and y=sin(phi)
+x=0.8
+y=0.6
+vr=1
+vx=5
+//For 0.8 lagging power factor
+percentreg=vr*x+vx*y
+printf("\n Percentage regulation=%.1f percent \n",percentreg)
+//For unity power factor
+x=1
+y=0
+percentreg=vr*x+vx*y
+printf("\n Percent regulation=%.0f percent \n",percentreg)
+//For 0.8 leading pf
+x=0.8
+y=0.6
+percentreg=vr*x-vx*y
+printf("\n Percent regulation=%.1f percent \n",percentreg)
diff --git a/323/CH5/EX5.17/ex5_17.sci b/323/CH5/EX5.17/ex5_17.sci new file mode 100755 index 000000000..6d322834a --- /dev/null +++ b/323/CH5/EX5.17/ex5_17.sci @@ -0,0 +1,18 @@ +//Chapter5,Ex5.17,Pg5.19
+clc;
+E1=230 //EMF in primary winding
+E2=460 //EMF in secondary winding
+R1=0.2 //Primary resistance
+R2=0.75 //Secondary resistance
+X1=0.5 //Reactance in ohms
+X2=1.8 //Secondary reactance in ohms
+I2=10 //secondary current in amperes
+pf=0.8 //cos(phi)=0.8
+K=E2/E1
+printf("K=%.0f \n",K)
+R02=R2+(K^2)*R1 //Effective secondary resistance
+X02=X2+(K^2)*X1 //Effective secondary reactance
+y=sqrt(1-(pf^2)) //sin(phi)=y
+V2=E2-I2*((R02*pf)+(X02*y))
+printf("\n Secondary terminal voltage=%.1f V \n",V2)
+
diff --git a/323/CH5/EX5.18/ex5_18.sci b/323/CH5/EX5.18/ex5_18.sci new file mode 100755 index 000000000..d07afa1e3 --- /dev/null +++ b/323/CH5/EX5.18/ex5_18.sci @@ -0,0 +1,15 @@ +//Example 5.18,Pg5.20
+clc;
+//Given Full load kVA=100kVA
+//Wi=600W(iron loss)
+//WCu=1.5kW(copper loss)
+//(i)
+x=1 //Full load
+pf=0.8
+n=(x*100*pf/((x*100*pf)+0.6+((x^2)*1.5)))*100
+printf("\n Efficiency=%.2f percent \n",n)
+//(ii)
+x=0.5
+pf=1
+n=(x*100*pf/((x*100*pf)+0.6+((x^2)*1.5)))*100
+printf("\n Efficiency=%.2f percent \n",n)
diff --git a/323/CH5/EX5.19/EX5_19.sci b/323/CH5/EX5.19/EX5_19.sci new file mode 100755 index 000000000..142384d82 --- /dev/null +++ b/323/CH5/EX5.19/EX5_19.sci @@ -0,0 +1,26 @@ +//Ex5.19,Pg5.21
+clc;
+flkva=25 //Full load kVA
+R1=1.8 //Primary resistance in ohms
+R2=0.02 //Secondary resistance in ohms
+E1=2200 //Primary EMF in volts
+E2=220 //Secondary EMF in volts
+Wi=1000 //Iron loss in watts
+I2=flkva*1000/220
+printf("\n I2=%.2f A \n",I2)
+K=E2/E1
+printf("\n K=%.1f \n",K)
+R02=R2+(K^2)*R1
+printf("\n Effective secondary resistance=%.3f ohms \n",R02)
+Wcu=(I2^2)*R02
+printf("\n Copper loss=%.2f W \n",Wcu)
+//(i)
+x=1 //Full load
+pf=1
+n=(x*flkva*pf/((x*flkva*pf)+Wi/1000+((x^2)*Wcu/1000)))*100
+printf("\n Efficiency=%.2f percent \n",n)
+//(ii)
+x=0.5
+pf=0.8
+n=(x*flkva*pf/((x*flkva*pf)+Wi/1000+((x^2)*Wcu/1000)))*100
+printf("\n Efficiency=%.2f percent \n",n)
diff --git a/323/CH5/EX5.2/ex5_2.sci b/323/CH5/EX5.2/ex5_2.sci new file mode 100755 index 000000000..a29042856 --- /dev/null +++ b/323/CH5/EX5.2/ex5_2.sci @@ -0,0 +1,5 @@ +//Chapter5,Ex5.2,Pg5.5
+clc;
+//Given data: Flux required=4.13mWb,V1=110V f=50,
+N1=110/(4.44*50*0.001*4.13) //No. of turns= Voltage of operation/(Flux required*4.44*frequency of input signal)
+printf("\n No. of turns=%.0f turns \n",N1)
diff --git a/323/CH5/EX5.20/ex5_20.sci b/323/CH5/EX5.20/ex5_20.sci new file mode 100755 index 000000000..5a65e2bc7 --- /dev/null +++ b/323/CH5/EX5.20/ex5_20.sci @@ -0,0 +1,13 @@ +//Ex5.20,Pg5.22
+clc;
+n1=98.135 //Given efficiency
+n2=97.751 //Given efficiency
+x=1 //Full load
+pf=0.8 //Power factor
+//Using the above data we have to solve 2 simultaneous equations by substituting the values in the formula for calculating the efficiency
+A=[1 1;1 0.25]
+B=[3.8; 2.3]
+W=A\B
+printf("\n Full load copper loss =%.0f kW \n",W(2))
+printf("\n Iron loss =%.1f kW \n",W(1))
+
diff --git a/323/CH5/EX5.21/ex5_21.sci b/323/CH5/EX5.21/ex5_21.sci new file mode 100755 index 000000000..09946ff84 --- /dev/null +++ b/323/CH5/EX5.21/ex5_21.sci @@ -0,0 +1,13 @@ +//Ex5.21,Pg5.23
+clc;
+//Given x=1 and pf=1 we obtain the first equation
+//With x=0.5 and pf=1 we obtain the second equation
+A=[1 1;1 0.25]
+B=[52.2;26.1]
+W=A\B
+printf("\n Copper loss=%.1f kW \n",W(2))
+printf("\n Iron loss=%.1f kW \n",W(1))
+//Now if x=0.6 and pf=1
+n= (0.6*600*1/((0.6*600*1)+W(1)+((0.6^2)*W(2))))*100
+printf("\n Efficiency=%.2f percent \n",n)
+
\ No newline at end of file diff --git a/323/CH5/EX5.22/ex5_22.sci b/323/CH5/EX5.22/ex5_22.sci new file mode 100755 index 000000000..8cb2bd414 --- /dev/null +++ b/323/CH5/EX5.22/ex5_22.sci @@ -0,0 +1,15 @@ +//Ex5.22,Pg5.23
+clc;
+flkva=150 //Given
+Wi=1.4 //Iron loss in kW
+Wcu=1.6 //Copper loss in kW
+//(a)
+lkva=flkva*sqrt(Wi/Wcu)
+printf("\n Load kVA=%.2f kVA \n",lkva)
+//For maximum efficiency Wi=Wcu=1.4kW and pf=0.8
+n= (lkva*0.8/((lkva*0.8)+Wi+Wcu))*100
+printf("\n Efficiency=%.2f percent \n",n)
+//(b)
+n= (0.5*flkva*0.8/((0.5*flkva*0.8)+Wi+(0.5^2)*Wcu))*100
+printf("\n Efficiency=%.2f percent \n",n)
+
\ No newline at end of file diff --git a/323/CH5/EX5.23/ex5_23.sce b/323/CH5/EX5.23/ex5_23.sce new file mode 100755 index 000000000..272f8c25b --- /dev/null +++ b/323/CH5/EX5.23/ex5_23.sce @@ -0,0 +1,11 @@ +//Example5.23,Pg5.24
+clc;
+flkva=100 //Full load kVA given
+x=1 //Full load
+pf=0.8 //Power factor lagging
+A=[1 1;1 -0.64]
+B=[2.474;0]
+W=A\B
+n= (x*flkva*pf/((x*flkva*pf) + W(1) +(x^2)*W(2)))*100
+printf("\n Efficiency=%.2f percent \n",n)
+
diff --git a/323/CH5/EX5.28/ex5_28.sci b/323/CH5/EX5.28/ex5_28.sci new file mode 100755 index 000000000..c45ba5893 --- /dev/null +++ b/323/CH5/EX5.28/ex5_28.sci @@ -0,0 +1,9 @@ +//Example5.28,Pg5.28
+clc;
+Wi=1 //Iron loss in kW
+op=50*0.8*10+25*0.6*10+0*4
+Wcu=1.2 //Copper loss in kW
+Culoss=1*1.2*10+(25/50)*1.2*10+0 //Copper loss in the entire day considering the load cycle for a day as given in the question
+Iloss=1*24
+nallday= (op/(op+Iloss+Culoss))*100
+printf("\n All day efficiency=%.2f percent \n",nallday)
diff --git a/323/CH5/EX5.3/ex5_3.sci b/323/CH5/EX5.3/ex5_3.sci new file mode 100755 index 000000000..3a9fa4ae8 --- /dev/null +++ b/323/CH5/EX5.3/ex5_3.sci @@ -0,0 +1,12 @@ +//Chapter 5,Ex5.3,Pg5.5
+clc;
+//Given f=50Hz V1=240V N1=80 N2=280 A=200sq cm
+//V1 is approximately equal to E1 for a transformer
+//(i)
+B=240/(4.44*50*200*0.0001*80) //E1=4.44fBmAN1
+printf("\n Maximum flux density Bm=%.2f Wb/m2 \n",B)
+//(ii)
+E2=(280/80)*240 //Induced Emf E2=N2/N1*E1
+printf("\n Induced EMF E2=%.0f V \n",E2)
+
+
diff --git a/323/CH5/EX5.4/ex5_4.sci b/323/CH5/EX5.4/ex5_4.sci new file mode 100755 index 000000000..ceeccd68e --- /dev/null +++ b/323/CH5/EX5.4/ex5_4.sci @@ -0,0 +1,14 @@ +//Chapter 5,Ex5.4,Pg5.5
+clc;
+//Given E1=3200V E2=400V f=50Hz N2=111
+//Part(i)
+N1=(3200/400)*111 //E2/E1=N2/N1
+printf("\n No of turns in primary=%.0f turns \n",N1)
+//Part(ii)
+I2=80*1000/400 //I2=KVA Rating*1000/V2 where I2=secondary current
+printf("\n Secondary current I2=%.0f A \n",I2)
+//Part(iii)
+A=400/(4.44*50*1.2*111) //Using the formula E=4.44BmAfN2
+printf("\n Cross sectional area=%.4f sq m \n",A)
+
+
diff --git a/323/CH5/EX5.5/ex5_5.sci b/323/CH5/EX5.5/ex5_5.sci new file mode 100755 index 000000000..70b8c94f3 --- /dev/null +++ b/323/CH5/EX5.5/ex5_5.sci @@ -0,0 +1,15 @@ +//Chapter5,Ex5.5,Pg5.6
+clc;
+//Given: kVA rating=5kVA E1=240V E2=2400V f=50Hz Bm=1.2Tesla
+N1=240/8 //Since it is given that EMF per turn is 8
+//(i)
+printf("\n No. of turns in primary=%.0f \n",N1)
+//(ii)
+N2=(2400/240)*N1 //E2/E1=N2/N1
+A=2400/(4.44*50*1.2*300) //using the formula E=4.44BmAfN2
+printf("\n Cross sectional area=%.2f sq m \n",A)
+//(iii)
+I1=5*1000/240 //Using the formula I=kVA rating*1000/V1
+printf("\n I1=%.2f A \n",I1)
+I2=5*1000/2400
+printf("\n I2=%.2f A \n",I2)
diff --git a/323/CH5/EX5.6/ex5_6.sci b/323/CH5/EX5.6/ex5_6.sci new file mode 100755 index 000000000..2985a63d1 --- /dev/null +++ b/323/CH5/EX5.6/ex5_6.sci @@ -0,0 +1,11 @@ +//Chapter5,Ex5.6,Pg5.6
+clc;
+//Given: kVA rating=250kVA f=50Hz N2/N1=0.1 E2=240V
+//(i)
+E1=240/0.1 //E2/E1=N2/N1
+printf("\n Primary EMF E1=%.0f V \n",E1)
+//(ii)
+I1=250*1000/2400 //Using the formula I=kVA rating*1000/V
+printf("\n I1=%.2f A \n",I1)
+I2=250*1000/240
+printf("\n I2=%.2f A \n",I2)
diff --git a/323/CH5/EX5.7/ex5_7.sci b/323/CH5/EX5.7/ex5_7.sci new file mode 100755 index 000000000..98a7d14d5 --- /dev/null +++ b/323/CH5/EX5.7/ex5_7.sci @@ -0,0 +1,13 @@ +//Chapter 5,Ex5.7,Pg 5.8
+clc;
+W0=200 //Power
+R1=3.5 //Primary resistance
+V1=2300 //Primary voltage
+I0=0.3 //no load current
+cl=(I0^2)*R1
+printf("\n Copper loss=%.3f W \n",cl)
+coreloss=W0-cl //Core loss=Input power-copper loss
+printf("\n Core loss=%.3f W \n",coreloss)
+pf=W0/(V1*I0)
+printf("\n Power factor = %.2f (lagging) \n",pf)
+
diff --git a/323/CH5/EX5.8/ex5_8.sci b/323/CH5/EX5.8/ex5_8.sci new file mode 100755 index 000000000..0be613208 --- /dev/null +++ b/323/CH5/EX5.8/ex5_8.sci @@ -0,0 +1,13 @@ +//Chapter 5,Ex5.8,Pg 5.8
+clc;
+//Primary voltage=230V no-load primary current=5A pf=0.25 N1=200 f=50Hz
+//(i)
+fluxm=230/(4.44*50*200) //Using E=4.44fN1*fluxm
+printf("\n Max flux in the core=%.5f Wb \n",fluxm)
+//(ii)
+W=230*5*0.25 //Using the formula W=V1*I0*powerfactor
+printf("\n Core loss =%.1f W \n",W)
+//(iii)
+x=sqrt(1-(0.25^2)) //x=sin(phi)
+Iu=5*x
+printf("\n Magnetising current=%.2f A \n",Iu)
diff --git a/323/CH5/EX5.9/ex5_9.sci b/323/CH5/EX5.9/ex5_9.sci new file mode 100755 index 000000000..93dc092d8 --- /dev/null +++ b/323/CH5/EX5.9/ex5_9.sci @@ -0,0 +1,6 @@ +//Chapter 5,Ex5.9,Pg 5.13
+clc;
+tr=4 //tr=N1/N2=4 which is given in the question
+K=1/tr
+Rp=50/(K^2) // Using the formula Equivalent resistance referred to primary=R'=R/(K^2)
+printf("\n Rp=%.0f ohms \n",Rp)
\ No newline at end of file |