diff options
Diffstat (limited to '3204/CH9/EX9.15/Ex9_15.sce')
-rw-r--r-- | 3204/CH9/EX9.15/Ex9_15.sce | 28 |
1 files changed, 28 insertions, 0 deletions
diff --git a/3204/CH9/EX9.15/Ex9_15.sce b/3204/CH9/EX9.15/Ex9_15.sce new file mode 100644 index 000000000..a1681d098 --- /dev/null +++ b/3204/CH9/EX9.15/Ex9_15.sce @@ -0,0 +1,28 @@ +// Initiliztion of variables
+P=5000 // N
+theta=45 // degree // angle made by Rd & Re with the horizontal
+Lab=3 // m
+Lac=3 // m
+Lbd=2 // m
+Lce=2 // m
+l=1.5 // m // dist of load P from B
+// Calculations (BEAM AB )
+// Consider the equilibrium of beams
+// We are using matrix to solve the simultaneous eqn's
+A=[(Lbd*sind(theta)) Lab;(Lce*sind(theta)) -Lac]
+B=[(P*l) 0]
+C=B*inv(A)
+// Calculations (BEAM AC)
+Re=C(1) // N (C) // from eq'n 1
+Ya=(Re*Lce*sind(theta))/Lac // N // from eq'n 7
+Xa=C(1)*cosd(theta) // N // from eq'n 2
+Ra=sqrt(Xa^2+Ya^2) // N (C)
+Yb=P-Ya-(C(1)*sind(theta)) // N (C) // eq'n 3
+Yc=Ya-(Re*sind(theta)) // N (T)
+// Results
+clc
+printf('(1) The value of axial force (Rd) in bar 2 is %f N \n',C(1))
+printf('(2) The value of axial force (Re) in bar 3 is %f N \n',Re)
+printf('(3) The value of axial force (Yb) in bar 1 is %f N \n',Yb)
+printf('(4) The value of axial force (Yc) in bar 4 is %f N \n',Yc)
+// here consider Yc as +ve coz the assumed direction of the force was compressive which is to be reversed
|