diff options
Diffstat (limited to '32/CH19')
-rwxr-xr-x | 32/CH19/EX19.01/19_01.sce | 52 | ||||
-rwxr-xr-x | 32/CH19/EX19.02/19_02.sce | 33 | ||||
-rwxr-xr-x | 32/CH19/EX19.03/19_03.sce | 80 | ||||
-rwxr-xr-x | 32/CH19/EX19.04/19_04.sce | 38 | ||||
-rwxr-xr-x | 32/CH19/EX19.05/19_05.sce | 50 | ||||
-rwxr-xr-x | 32/CH19/EX19.06/19_06.sce | 51 | ||||
-rwxr-xr-x | 32/CH19/EX19.07/19_07.sce | 66 | ||||
-rwxr-xr-x | 32/CH19/EX19.08/19_08.sce | 23 | ||||
-rwxr-xr-x | 32/CH19/EX19.09/19_09.sce | 29 | ||||
-rwxr-xr-x | 32/CH19/EX19.10/19_10.sce | 38 |
10 files changed, 460 insertions, 0 deletions
diff --git a/32/CH19/EX19.01/19_01.sce b/32/CH19/EX19.01/19_01.sce new file mode 100755 index 000000000..eed30b1e3 --- /dev/null +++ b/32/CH19/EX19.01/19_01.sce @@ -0,0 +1,52 @@ +//pathname=get_absolute_file_path('19.01.sce')
+//filename=pathname+filesep()+'19.01-data.sci'
+//exec(filename)
+//Specific heat of gases(in kJ/kg.K):
+Cpg=1.13 //kJ/kg.K
+Cpa=1.005 //kJ/kg.K
+rg=1.33
+ra=1.4
+C=41.84*10^3 //kJ/kg of fuel
+//Temperatures(in K):
+T1=272
+T3=1000
+//Compression efficiency:
+nc=0.84
+p3=3
+p2=3
+p1=0.5
+p5=0.4
+//Turbine efficiency:
+nt=0.82
+//Nozzle efficiency:
+nn=0.92
+//Speed(in m/s):
+Ca=200
+//Temperature at state 2(in K):
+T2=T1*(p2/p1)^((ra-1)/ra)
+//Temperature at state 2'(in K):
+T2a=T1+(T2-T1)/nc
+//Compressive work(in kW):
+Wc=Cpa*(T2a-T1)
+printf("\n RESULT \n")
+printf("\nPower required for compressor = %f kW/kg",Wc)
+//Air fuel ratio:
+r=(C-Cpg*T3)/(Cpg*T3-Cpa*T2a)
+printf("\nAir fuel ratio = %f",r)
+//Temperature at state 4'(in K):
+T4a=T3-Cpa/Cpg*(T2a-T1)/(1+r)
+T4a=810.46
+T4=T3-(T3-T4a)/nt
+//Pressure of gas leaving turbine(in bar):
+p4=p3*(T4/T3)^(rg/(rg-1))
+printf("\nPressure of gas leaving turbine = %f bar",p4)
+//Temperature at state 5(in K):
+T5=T4a*(p5/p4)^((rg-1)/rg)
+//Temperature at state 5'(in K):
+T5a=T4a-nn*(T4a-T5)
+//Exit jet velocity(in m/s):
+C5a=sqrt(2*Cpg*(T4a-T5a)*10^3)
+Ce=C5a
+//Thrust per kg of air per second:
+T=(1+1/r)*Ce-Ca
+printf("\nThrust = %f N/kg/s",T)
\ No newline at end of file diff --git a/32/CH19/EX19.02/19_02.sce b/32/CH19/EX19.02/19_02.sce new file mode 100755 index 000000000..6709b3951 --- /dev/null +++ b/32/CH19/EX19.02/19_02.sce @@ -0,0 +1,33 @@ +//pathname=get_absolute_file_path('19.02.sce')
+//filename=pathname+filesep()+'19.02-data.sci'
+//exec(filename)
+T1=285 //K
+p1=1 //bar
+T3=773 //K
+p2=4 //bar
+r=1.4
+Cpa=1.005 //kJ/kg.K
+CV=43100 //kJ/kg.K
+T3=273+500 //K
+//Temperature at state 2(in K):
+T2=T1*(p2/p1)^((r-1)/r)
+//Temperature at state 2'(in K):
+T2a=T1+1.1*(T2-T1)
+//Work required in compressor(in kJ/kg of air):
+Wc=Cpa*(T2a-T1)
+printf("\n RESULT \n")
+printf("\nPower required to drive compressor = %f kW/kg of air",Wc)
+//Heat added in combustion chamber(in kJ/kg of air):
+qa=Cpa*(T3-T2a)
+//Air fuel ratio:
+r1=CV/qa
+printf("\nAir-fuel ratio = %f",r1)
+//Temperature at state 5(in K):
+T5=T3*(p1/p2)^((r-1)/r)
+//Enthalpy drop in the nozzle(in kJ/kg of air):
+hd=Cpa*(T3-T5-T2a+T1)
+//Velocity of exit gas from nozzle(in m/s):
+Ce=sqrt(2*hd*10^3)
+//Thrust(in N/kg/s):
+T=(1+1/r)*Ce
+printf("\nThrust = %f N/kg of air/s",Ce)
\ No newline at end of file diff --git a/32/CH19/EX19.03/19_03.sce b/32/CH19/EX19.03/19_03.sce new file mode 100755 index 000000000..6f5294d3f --- /dev/null +++ b/32/CH19/EX19.03/19_03.sce @@ -0,0 +1,80 @@ +//pathname=get_absolute_file_path('19.03.sce')
+//filename=pathname+filesep()+'19.03-data.sci'
+//exec(filename)
+//Specific heat of gases(in kJ/kg.K):
+Cpg=1.14 //kJ/kg.K
+Cpa=1.005 //kJ/kg.K
+//Mechanical efficiency:
+nm=0.96
+//Polytropic efficiency of compressor:
+nc=0.87
+//Turbine efficiency:
+nt=0.90
+//Nozzle efficiency:
+nn=0.95
+//By pass ratio:
+B=5.5
+//Mass flow rate of air(in kg/s):
+ma=200
+//Pressures(in bar):
+p2=1.5
+p1=1
+p3=28
+pa=p1
+//Temperatures(in K):
+T1=288
+rg=1.33
+ra=1.4
+CV=43100 //kJ/kg
+T4=1573 //K
+//For compression:a1=((ne-1)/ne)
+a1=1/nc*(ra-1)/ra
+a1=0.328
+//For expansion:a2=(nt-1)/nt
+a2=nt*(rg-1)/rg
+a2=0.223
+//Temperature at state 2'(in K):
+T2a=T1*(p2/p1)^a1
+//Temperature at state 3'(in K):
+T3a=T2a*(p3/p2)^a2
+//Using nozzle efficiency:
+dT=nn*T2a*(1-(pa/p2)^((ra-1)/ra))
+//Velocity at exit of nozzle(in m/s):
+C8=sqrt(2*Cpa*10^3*dT)
+//Mass flow rate of bypass air(in kg/s):
+mab=ma*B/(B+1)
+//Mass flow rate of hot gases(in kg/s):
+mca=ma-mab
+//Thrust available due to by pass air(in kN):
+Tb=mab*C8/10^3
+//Air fuel ratio:
+r1=(Cpg*T4-Cpa*T3a)/(CV-Cpg*T4)
+//Temperature at state 5'(in K):
+T5a=T4-(Cpa*(T3a-T2a)/(nm*(1+r1)*Cpg))
+//Temperature at state 6'(in K):
+T6a=(Cpg*nm*T5a-(1+B)*Cpa*(T2a-T1))/(Cpg*nm)
+//Pressure at state 4(in bar):
+p4=p3-p2
+//Pressure at state 5(in bar):
+p5=p4*(T5a/T4)^(1/a2)
+//Pressure at state 6(in bar):
+p6=p5*(T6a/T5a)^(1/a2)
+//Critical pressure ratio:
+c=((rg+1)/2)^(rg/(rg-1))
+//Pressure at state 7(in bar):
+p7=p6/c
+//For exit nozzle(in K):
+dT1=nn*T6a*(1-(p7/p6)^((rg-1)/rg))
+//Velocity at exit of nozzle(in m/s):
+C7=sqrt(2*Cpg*10^3*dT1)
+//Thrust due to hot gases(in kN):
+Tg=mca*C7/10^3
+//Total thrust(in kN):
+Tt=Tg+Tb
+//Specific thrust(in kN/kg/s):
+st=Tt/ma
+printf("\n RESULT \n")
+printf("\nSpecific thrust = %f kN/kg/s",st)
+//Specific fuel consumption(in kg/h.N):
+sfc=r1*mca*3600/(Tt*10^3)
+printf("\nSpecific fuel consumption = %f kg/h.N",sfc)
\ No newline at end of file diff --git a/32/CH19/EX19.04/19_04.sce b/32/CH19/EX19.04/19_04.sce new file mode 100755 index 000000000..38d032247 --- /dev/null +++ b/32/CH19/EX19.04/19_04.sce @@ -0,0 +1,38 @@ +//pathname=get_absolute_file_path('19.04.sce')
+//filename=pathname+filesep()+'19.04-data.sci'
+//exec(filename)
+//Velociy of turbojet plane(in m/s):
+Ca=277.78
+//Thrust to velocity ratio:
+r1=0.5
+//Rate at which air enters(in kg/s):
+m=50
+//Air fuel ratio:
+r=52
+//Lower calorific value of fuel:
+LCV=43100
+//Jet velocity(in m/s):
+Ce=Ca/r1
+printf("\n RESULT \n")
+printf("\nJet velocity = %f m/s",Ce)
+//Thrust(in N):
+T=(m+m/r)*Ce-m*Ca
+printf("\nThrust = %f kN",T/10^3)
+//Specific thrust(in N/kg/s):
+St=T/m
+printf("\nSpecific thrust = %f N/kg/s",St)
+//Thrust power(in kW):
+P=T*Ca/10^3
+printf("\nThrust power = %f kW",P)
+//Propulsive efficiency:
+np=2/(1+1/r1)*100
+printf("\nPropulsive efficiency = %f percent",np)
+//Thermal efficiency:
+nt=((1+1/r)*Ce^2-Ca^2)/(2*1/r*LCV)/10
+printf("\nThermal efficiency = %f percent",nt)
+//Overall efficiency:
+no=np*nt/100
+printf("\nOverall efficiency = %f percent",no)
+//Specific fuel consumption(in kg/h.N):
+sfc=m/r*3600/(T)
+printf("\nSpecific fuel consumption = %f kg/h.N",sfc)
\ No newline at end of file diff --git a/32/CH19/EX19.05/19_05.sce b/32/CH19/EX19.05/19_05.sce new file mode 100755 index 000000000..d7efe6eae --- /dev/null +++ b/32/CH19/EX19.05/19_05.sce @@ -0,0 +1,50 @@ +//pathname=get_absolute_file_path('19.05.sce')
+//filename=pathname+filesep()+'19.05-data.sci'
+//exec(filename)
+//Pressures(in bar):
+p1=2.2
+//Temperatures(in K):
+T1=220
+T4=1273
+//Velocities(in m/s):
+C1=260
+//Nozzle efficiency:
+nn=0.85
+//Turbine efficiency:
+nt=0.88
+//Diffuser efficiency:
+nd=0.90
+//Specific heat(in kJ/kg.K):
+Cp=1.005
+//Adiabatic index of compression:
+r=1.4
+//Pressure ratio:
+r1=12
+//Temperature at state 2(in K):
+T2=T1+C1^2/(2*Cp*10^3)
+//Pressure at state 2(in bar):
+p2=p1*(T2/T1)^(r/(r-1))
+p3=p2*r1
+p4=p3
+//Temperature at state 3(in K):
+T3=T2*(p3/p2)^((r-1)/r)
+//Temperature at state 3'(in K):
+T3a=T2+(T3-T2)/nn
+//Temperature at state 5'(in K):
+T5a=T4-(T3a-T2)
+//Temperature of state 5(in K):
+T5=T4-(T4-T5a)/nt
+//Pressure at state 5(in bar):
+p5=p4*(T5/T4)^(r/(r-1))
+//Temperature at state 2(in K):
+T2=C1+(200)^2/(2*Cp*10^3)
+//Temperature at state 2'(in K):
+T2a=T1+(T2-T1)/nd
+T3a=568.635
+T4=1000
+p6=2.2
+T6=542.83
+//Velocity at exit of nozzle(in m/s):
+C6=sqrt(2*(T5-T6)*Cp*10^3)
+printf("\n RESULT \n")
+printf("\nVelocity of exit of nozzle = %f m/s",C6)
\ No newline at end of file diff --git a/32/CH19/EX19.06/19_06.sce b/32/CH19/EX19.06/19_06.sce new file mode 100755 index 000000000..a60b3a6ca --- /dev/null +++ b/32/CH19/EX19.06/19_06.sce @@ -0,0 +1,51 @@ +//pathname=get_absolute_file_path('19.06.sce')
+//filename=pathname+filesep()+'19.06-data.sci'
+//exec(filename)
+//Calorific value(in kJ/kg):
+CV=45000
+//Inlet temperature(in C):
+T1=1000
+T4=T1
+//Nozzle efficiency:
+nn=0.9
+//Diffuser efficiency:
+nd=0.9
+//Compressive efficiency:
+nc=0.8
+//Turbine efficiency:
+nt=0.8
+//Specific heat(in kJ/kg.K):
+Cp=1.005
+p3=7.248 //bar
+p4=p3-0.15
+r=1.4
+p6=0.7
+//Gas constant(in kJ/kg.K):
+R=0.287
+//Temperature at state 2(in K):
+T2a=282.11
+T3a=568.635
+//Air fuel ratio:
+r1=(CV-T1*Cp)/(Cp*T1-Cp*T3a)
+//Temperature at state 5'(in K):
+T5a=T4-(T3a-T2a)
+//Temperature at state 5(in K):
+T5=T4-(T4-T5a)/nt
+p5=p4*(T5/T4)^(r/(r-1))
+//Temperature at state 6(in K):
+T6=T5a*(p6/p5)^((r-1)/r)
+//Temperature at state 6'(in K):
+T6a=T5a-(T5a-T6)*nn
+//Velocity at exit of nozzle(in m/s):
+C6=sqrt(2*Cp*(T5a-T6a)*10^3)
+//Volume flow rate of air(in m^3/s):
+v=200/10
+//Mass flow rate(in kg/s):
+m=0.7*10^2*v/(R*260)
+//Specific thrust(in N/kg of air/s):
+St=(1+1/r1)*C6
+printf("\n RESULT \n")
+printf("\nSpecific thrust = %f N/kg of air/s",St)
+//Total thrust(in N):
+Tt=m*St
+printf("\nTotal thrust = %f N",Tt)
\ No newline at end of file diff --git a/32/CH19/EX19.07/19_07.sce b/32/CH19/EX19.07/19_07.sce new file mode 100755 index 000000000..c265cbcbc --- /dev/null +++ b/32/CH19/EX19.07/19_07.sce @@ -0,0 +1,66 @@ +//pathname=get_absolute_file_path('19.07.sce')
+//filename=pathname+filesep()+'19.07-data.sci'
+//exec(filename)
+//Specific heat(in kJ/kg.K):
+Cpa=1.005
+Cpg=1.087
+ra=1.4
+rg=1.33
+//Gas constant(in kJ/kg.K):
+R=0.287
+//Speed of aeroplane(in m/s):
+C0=250
+//Velocity at exit of turbine(in m/s):
+C4a=180
+CV=43000 //kJ/kg
+//Thrust power(in kW):
+P=800
+//Temperatures(in K):
+T0=-20+273
+T2=474.25
+T3=973
+//Pressures(in bar):
+p0=0.3
+p1=0.31
+p5=p0
+//Compressor efficiency:
+nc=0.85
+//Jet engine efficiency:
+nj=0.90
+//Pressure ratio:
+r1=6
+//Temperature at state 2(in K):
+T1=T0+C0^2/(2*Cpa*10^3)
+T2a=T1+(T2-T1)/nc
+//Pressure at state 2(in bar):
+p2=p1*r1
+p3=p2
+//Fuel air ratio:
+FA=(Cpa*T3-Cpg*T2a)/(CV-Cpa*T3)
+printf("\n RESULT \n")
+printf("\nAir-fuel ratio = %f:1",1/FA)
+//Temperature at state 4'(in K):
+T4a=T3-Cpa/Cpg*(T2a-T1)/(1+FA)
+//Temperature at state 4(in K):
+T4=T3-(T3-T4a)/nc
+//Pressure at state 4(in bar):
+p4=p3*(T4/T3)^(rg/(rg-1))
+//Temperature at state 5(in K):
+T5=T4a*(p5/p4)^((rg-1)/rg)
+//Nozzle exit velocity(in m/s):
+C5=sqrt(2*nj*(Cpg*10^3*(T4a-T5)+C4a^2/2))
+//Overall efficiency:
+no=(((1+FA)*C5-C0)*C0)/(FA*CV*10^3)*100
+//Rate of air consumption(in kg/s):
+ma=P*10^3/(((1+FA)*C5-C0)*C0)
+printf("\nRate of air consumption = %f kg/s",ma)
+//Power produced by the turbine(in kW):
+Pt=ma*(1+FA)*Cpg*(T3-T4a)
+printf("\nPower produced by turbine = %f kW",Pt)
+//Temperature at state 5'(in K):
+T5a=T4a-((C5^2-C4a^2)/(2*Cpg*10^3))
+//Density of exhaust gases(in m^3/kg):
+d5a=p5*10^2/(R*T5a)
+//Jet exit area(in m^2):
+Aj=ma*(1+FA)/(C5*d5a)
+printf("\nJet exit area = %f m^2",Aj)
\ No newline at end of file diff --git a/32/CH19/EX19.08/19_08.sce b/32/CH19/EX19.08/19_08.sce new file mode 100755 index 000000000..0a77e8f2d --- /dev/null +++ b/32/CH19/EX19.08/19_08.sce @@ -0,0 +1,23 @@ +//pathname=get_absolute_file_path('19.08.sce')
+//filename=pathname+filesep()+'19.08-data.sci'
+//exec(filename)
+//Speed of jet plane(in m/s):
+Ca=250
+//Density of air(in kg/m^3):
+d=0.15
+//Drag(in kW):
+D=6800
+//Propulsive efficiency:
+np=0.56
+//Relative velocity(in m/s):
+Ce=2*Ca/np-Ca
+//Absolute velocity of jet(in m/s):
+C=Ce-Ca
+//Mass flow rate(in kg/s):
+ma=D/(Ce-Ca)
+//Volume flow rate(in m^3/s):
+v=ma/d
+//Jet diameter(in m):
+dj=sqrt(v*4/(2*%pi*Ce))
+printf("\n RESULT \n")
+printf("\nJet diamter = %f cm",dj*100)
\ No newline at end of file diff --git a/32/CH19/EX19.09/19_09.sce b/32/CH19/EX19.09/19_09.sce new file mode 100755 index 000000000..3f10fe900 --- /dev/null +++ b/32/CH19/EX19.09/19_09.sce @@ -0,0 +1,29 @@ +//pathname=get_absolute_file_path('19.09.sce')
+//filename=pathname+filesep()+'19.09-data.sci'
+//exec(filename)
+//Gas constant(in kJ/kg.K):
+R=0.287
+//Density ratio:
+r1=0.4
+//Specific heat(in kJ/kg.K):
+Cp=1.005
+//Drag coefficient:
+d=0.018
+//Jet velocity(in m/s):
+Ce=550
+//Wing area(in m^2):
+A=20
+//Speed of aeroplane(in m/s):
+Ca=900*1000/3600
+//Density of STP(in kg/m^3):
+d1=1.01325*10^2/(R*288)
+//Density of air at altitude(in kg/m^3):
+d2=r1*d1
+//Thrust on aeroplane:
+T=d*A*d2*Ca^2/2
+//Mass flow rate(in kg/s):
+ma=T/(Ce-Ca)
+//Specific thrust(in N/kg of air):
+St=T/ma
+printf("\n RESULT \n")
+printf("\nSpecific thrust = %d N/kg of air",St)
\ No newline at end of file diff --git a/32/CH19/EX19.10/19_10.sce b/32/CH19/EX19.10/19_10.sce new file mode 100755 index 000000000..d1edaa453 --- /dev/null +++ b/32/CH19/EX19.10/19_10.sce @@ -0,0 +1,38 @@ +//pathname=get_absolute_file_path('19.10.sce')
+//filename=pathname+filesep()+'19.10-data.sci'
+//exec(filename)
+//Speed of air craft(in m/s):
+Ca=250
+//Mass flow rate(in kg/s):
+m=55
+//Air fuel ratio:
+r=85
+//Combustion efficiency:
+nc=0.96
+//Lower calorific value(in kJ/kg):
+CV=43000
+//Isentropic enthalpy change(in kJ/kg):
+dh=220
+//Velocity coefficient:
+n=0.95
+//Jet velocity(in m/s):
+Ce=n*sqrt(2*dh*10^3)
+Ce=615.67
+//Specific thrust per kg of air(in N/kg air):
+St=400.67
+//Fuel flow rate(in kg/hr):
+r1=1/r*3600*m
+//Specific fuel consumption(in kg/N.hr):
+sfc=r1/(St*m)
+//Thrust power(in kW):
+P=m*(Ce-Ca)*Ca/10^3
+//Propulsive power(in kW):
+Pp=m*(Ce^2-Ca^2)/2/10^3
+//Propulsive efficiency:
+np=P/Pp*100
+//Overall efficiency:
+no=P/(m/r*CV*nc)*100
+printf("\n RESULT \n")
+printf("\nPropulsive power = %f kW",Pp)
+printf("\nPropulsive efficiency = %f percent",np)
+printf("\nOverall efficiency = %f percent",no)
\ No newline at end of file |