diff options
Diffstat (limited to '32/CH13')
-rwxr-xr-x | 32/CH13/EX13.01/13_01.sce | 31 | ||||
-rwxr-xr-x | 32/CH13/EX13.02/13_02.sce | 22 | ||||
-rwxr-xr-x | 32/CH13/EX13.03/13_03.sce | 40 | ||||
-rwxr-xr-x | 32/CH13/EX13.04/13_04.sce | 60 | ||||
-rwxr-xr-x | 32/CH13/EX13.05/13_05.sce | 34 | ||||
-rwxr-xr-x | 32/CH13/EX13.06/13_06.sce | 37 | ||||
-rwxr-xr-x | 32/CH13/EX13.07/13_07.sce | 42 | ||||
-rwxr-xr-x | 32/CH13/EX13.08/13_08.sce | 17 | ||||
-rwxr-xr-x | 32/CH13/EX13.09/13_09.sce | 36 | ||||
-rwxr-xr-x | 32/CH13/EX13.10/13_10.sce | 41 | ||||
-rwxr-xr-x | 32/CH13/EX13.11/13_11.sce | 37 | ||||
-rwxr-xr-x | 32/CH13/EX13.12/13_12.sce | 41 | ||||
-rwxr-xr-x | 32/CH13/EX13.13/13_13.sce | 50 | ||||
-rwxr-xr-x | 32/CH13/EX13.14/13_14.sce | 61 | ||||
-rwxr-xr-x | 32/CH13/EX13.15/13_15.sce | 38 |
15 files changed, 587 insertions, 0 deletions
diff --git a/32/CH13/EX13.01/13_01.sce b/32/CH13/EX13.01/13_01.sce new file mode 100755 index 000000000..df39554db --- /dev/null +++ b/32/CH13/EX13.01/13_01.sce @@ -0,0 +1,31 @@ +//pathname=get_absolute_file_path('13.01.sce')
+//filename=pathname+filesep()+'13.01-data.sci'
+//exec(filename)
+//Pressure of dry steam(in bar):
+p1=10
+//Velocity of steam entering(in m/s):
+C1=100
+//Velocity of steam leaving the nozzle(in m/s):
+C2=300
+//Pressure of steam at exit(in bar):
+p2=5
+//Mass flow rate(in kg/s):
+m=16
+//Heat loss to surroundings(in kJ/kg):
+q=10
+//From steam tables:
+h1=2778.1 //kJ/kg
+hf=640.23 //kJ/kg
+hfg=2108.5 //kJ/kg
+//Heat drop in the nozzle(in kJ/kg):
+dh=(q*10^3+(C1^2-C2^2)/2)/1000
+//Total heat drop(in kJ/s):
+dQ=-dh*m
+//Enthalpy at state 2(in kJ/kg):
+h2=h1+dh
+//Dryness fraction at state 2:
+x2=(h2-hf)/hfg
+printf("\nRESULT\n")
+printf("\nHeat drop in the nozzle = %f kJ/kg",-dh)
+printf("\nTotal heat drop = %f kJ/s",dQ)
+printf("\nDryness fraction at exit = %f",x2)
\ No newline at end of file diff --git a/32/CH13/EX13.02/13_02.sce b/32/CH13/EX13.02/13_02.sce new file mode 100755 index 000000000..41d091396 --- /dev/null +++ b/32/CH13/EX13.02/13_02.sce @@ -0,0 +1,22 @@ +//pathname=get_absolute_file_path('13.02.sce')
+//filename=pathname+filesep()+'13.02-data.sci'
+//exec(filename)
+//Steam entering at pressure(in bar):
+p1=10
+//Pressure at which steam leaves(in bar):
+p2=6
+//Cross-section area of exit of nozzle(in cm^2):
+A2=20
+//From steam tables:
+h1=3478.5 //kJ/kg
+s1=7.7622 //kJ/kg.K
+s2=s1
+T2=418.45 //C(by interpolation)
+h2=3309.51 //kJ/kg
+v2=0.5281 //m^3/kg
+//Velocity at exit(in m/s):
+C2=sqrt(2*(h1-h2)*10^3)
+//Mass flow rate(in kg/s):
+m=A2*10^(-4)*C2/v2
+printf("\nRESULT\n")
+printf("\nMass flow rate= %f kg/s",m)
\ No newline at end of file diff --git a/32/CH13/EX13.03/13_03.sce b/32/CH13/EX13.03/13_03.sce new file mode 100755 index 000000000..8e57e219f --- /dev/null +++ b/32/CH13/EX13.03/13_03.sce @@ -0,0 +1,40 @@ +//pathname=get_absolute_file_path('13.03.sce')
+//filename=pathname+filesep()+'13.03-data.sci'
+//exec(filename)
+//Pressure of steam entering(in bar):
+p1=12
+//Pressure at exit(in bar):
+p2=6
+//Mass flow rate(in kg/s):
+m1=5
+m2=m1
+m3=m1
+//Exit velocity(in m/s):
+C3a=500
+//From steam tables:
+h1=3045.8 //kJ/kg
+h2=2900.05 //kJ/kg
+s2=7.0317 //kJ/kg.K
+s1=s2
+s3=s2
+v2=0.3466 //m^3/kg
+h3=2882.55 //kJ/kg
+v3=0.3647 //m^3/kg
+//For superheated steam:
+n=1.3
+//Pressue at state 2(in bar):
+p2=p1*(2/(n+1))^(n/(n-1))
+//Velocity at throat(in m/s):
+C2=sqrt(2*(h1-h2)*10^3)
+//Cross-sectional area at throat(in m^2):
+A2=m2*v2/C2
+//Ideal velocity at exit(in m/s):
+C3=sqrt(2*(h1-h3)*10^3)
+//Cross-sectional area at exit(in m^2):
+A3=m3*v3/C3a
+//Coefficient of velocity:
+r=C3a/C3
+printf("\nRESULT\n")
+printf("\nCross-sectional area at throat = %f m^2",A2)
+printf("\nCross-sectional area at exit = %f m^2",A3)
+printf("\nCoefficient of velocity = %f",r)
\ No newline at end of file diff --git a/32/CH13/EX13.04/13_04.sce b/32/CH13/EX13.04/13_04.sce new file mode 100755 index 000000000..238dd5c8f --- /dev/null +++ b/32/CH13/EX13.04/13_04.sce @@ -0,0 +1,60 @@ +//pathname=get_absolute_file_path('13.04.sce')
+//filename=pathname+filesep()+'13.04-data.sci'
+//exec(filename)
+//Pressure of steam entering(in bar):
+p1=16
+//Pressure at exit(in bar):
+p3=5
+//Mass flow rate(in kg/s):
+m1=1
+m2=m1
+m3=m1
+//From steam tables:
+//For case 1:
+h1=3034.8 //kJ/kg
+s1=6.8844 //kJ/kg.K
+v1=0.15862 //m^3/kg
+n=1.3
+h2=2891.39 //kJ/kg
+h3=2777 //kJ/kg
+v2=0.2559 //m^3/kg
+v3=0.3882 //m^3/kg
+//For case 2:
+h2a=2905.73 //kJ/kg
+v2a=0.2598 //m^3/kg
+v3a=0.40023 //m^3/kg
+//Pressure at the throat of nozzle(in bar):
+p2=p1*(2/(n+1))^(n/(n-1))
+//Heat drop up to throat section(in kJ/kg):
+q12=h1-h2
+//Velocity at throat(in m/s):
+C2=sqrt(2*(h1-h2)*10^3)
+//Heat drop from exit(in kJ/kg):
+q23=h2-h3
+//Velocity at exit(in m/s):
+C3=sqrt(2*(h2-h3)*10^3+C2^2)
+//Throat area(in m^2):
+A2=m2*v2/C2
+//Exit area(in m^2):
+A3=m3*v3/C3
+printf("\nRESULT\n")
+printf("\nFor frictionless expansion")
+printf("\nThroat area = %f cm^2",A2*(10^4))
+printf("\nExit area = %f cm^2",A3*(10^4))
+//Considering expansion to have 10% friction loss:
+q12a=0.9*q12
+//Actual velocity at throat(in m/s):
+C2a=sqrt(2*q12a*10^3)
+//Actual throat area(in m^2):
+A2a=m2*v2a/C2a
+//Actual drop at the exit of the nozzle(in kJ/kg):
+q23a=0.9*q23
+//Actual enthalpy at state 3(in kJ/kg):
+h3a=h2a-q23a
+//Actual velocity at exit(in m/s):
+C3a=sqrt(2*q23a*10^3+C2a^2)
+//Actual area at exit(in m^2):
+A3a=m3*v3a/C3a
+printf("\n\nConsidering friction")
+printf("\nThroat area = %f cm^2",A2a*(10^4))
+printf("\nExit area = %f cm^2",A3a*(10^4))
\ No newline at end of file diff --git a/32/CH13/EX13.05/13_05.sce b/32/CH13/EX13.05/13_05.sce new file mode 100755 index 000000000..a01b403ad --- /dev/null +++ b/32/CH13/EX13.05/13_05.sce @@ -0,0 +1,34 @@ +//pathname=get_absolute_file_path('13.05.sce')
+//filename=pathname+filesep()+'13.05-data.sci'
+//exec(filename)
+//Power of turbine(in MW):
+P=1
+//Pressure of steam entering(in bar):
+p1=20
+//Steam consumption rate(in kg/kW.h):
+m=8
+//Pressure at which steam leaves(in bar):
+p3=0.2
+//Throat diameter(in m):
+d=0.01
+//From Mollier diagram:
+q12=142 //kJ/kg
+v2=0.20 //m^3/kg
+q13=807 //kJ/kg
+v3=7.2 //m^3/kg
+//Velocity at throat(in m/s):
+C2=sqrt(2*q12*10^3)
+//Mass flow rate:
+m2=%pi*d^2/4*C2/v2
+m3=m2
+//Number of nozzles:
+n=10^3*m/(3600*m2)
+//Useful heat drop:
+q13a=0.90*q13
+//Velocity at exit(in m/s):
+C3=sqrt(2*10^3*q13a)
+//Area at exit(in m^2):
+A3=m3*v3/C3
+printf("\nRESULT\n")
+printf("\nNumber of nozzles required = %d",n+1)
+printf("\nArea at exit = %f cm^2",A3*10^4)
\ No newline at end of file diff --git a/32/CH13/EX13.06/13_06.sce b/32/CH13/EX13.06/13_06.sce new file mode 100755 index 000000000..f0accc296 --- /dev/null +++ b/32/CH13/EX13.06/13_06.sce @@ -0,0 +1,37 @@ +//pathname=get_absolute_file_path('13.06.sce')
+//filename=pathname+filesep()+'13.06-data.sci'
+//exec(filename)
+//Pressure at which steam is supplied(in MPa):
+p1=0.7
+//Length of diverging nozzle(in m):
+l=0.06
+//Throat diameter(in mm):
+d=0.005
+//Pressure at which steam leaves the nozzle(in MPa):
+p3=0.1
+//From Mollier diagram:
+q12=138 //kJ/kg
+v2=0.58 //m^3/kg
+T=203 //C
+q23=247 //kJ/kg
+q23a=209.95 //kJ/kg
+v3a=1.7 //m^3/kg
+//Velocity at throat(in m/s):
+C2=sqrt(2*q12*10^3)
+//Mass flow rate(in kg/s):
+m1=%pi*d^2/4*C2/v2
+m2=m1
+m3=m1
+//Total heat drop(in kJ/kg):
+q=q12+q23a
+//Velocity at exit(in m/s):
+C3=sqrt(2*10^3*q)
+//Area at exit(in m^2):
+A3=m3*v3a/C3
+//Diameter at exit(in mm):
+d1=(sqrt(A3*4/%pi))*10^3
+a=atan((d1-d*10^3)/(2*60))*180/%pi
+printf("\nRESULT\n")
+printf("\nWith no losses, temperature at throat = %d C",T)
+printf("\nVelocity at throat = %f m/s",C2)
+printf("\nWith losses, cone angle = %f",2*a)
\ No newline at end of file diff --git a/32/CH13/EX13.07/13_07.sce b/32/CH13/EX13.07/13_07.sce new file mode 100755 index 000000000..cad81323b --- /dev/null +++ b/32/CH13/EX13.07/13_07.sce @@ -0,0 +1,42 @@ +//pathname=get_absolute_file_path('13.07.sce')
+//filename=pathname+filesep()+'13.07-data.sci'
+//exec(filename)
+//Power of the turbine(in hp):
+P=5000
+//Steam required(in kg of steam/hp-hr):
+m=P*6/3600
+//Efficiency of nozzle:
+n=0.90
+//Nozzle angle:
+a=12
+//Pitch(in cm):
+p=5
+//Thickness(in cm):
+t=0.3
+//From steam tables:
+h1=2794 //kJ/kg
+s1=6.4218 //kJ/kg.K
+s2=s1
+x2=0.9478
+h2=2662.2 //kJ/kg
+x2a=0.9542
+v2a=0.2294 //m^3/kg
+//Change in enthalpy(in kJ/kg):
+h12=h1-h2
+//Actual change(in kJ/kg):
+h12a=n*h12
+//Velocity at inlet(in m/s):
+C2=sqrt(2*h12a*10^3)
+//Area at exit of nozzle(in cm^2):
+A2=m*v2a/C2*10^4
+//Approximate length of the nozzle(in cm):
+l=60*%pi/3
+//Number of nozzles:
+n=int(l/p)+1
+//Correct length of nozzle arc:
+l1=n*p
+//Radial height of nozzle(in cm):
+h=A2/((p*sin(a*%pi/180)-t)*n)
+printf("\nRESULT\n")
+printf("\nLength of nozzle = %d cm",l1)
+printf("\nRadial height of nozzle = %f cm",h)
\ No newline at end of file diff --git a/32/CH13/EX13.08/13_08.sce b/32/CH13/EX13.08/13_08.sce new file mode 100755 index 000000000..9b28da494 --- /dev/null +++ b/32/CH13/EX13.08/13_08.sce @@ -0,0 +1,17 @@ +//pathname=get_absolute_file_path('13.08.sce')
+//filename=pathname+filesep()+'13.08-data.sci'
+//exec(filename)
+//Pressure at which steam enters(in bar):
+p1=13
+//Pressure at which steam leaves(in bar):
+p2=6
+//Temperature of steam entering(in K):
+T1=150+273
+//Adibatic insex of compression:
+r=1.4
+//Final temperature of steam(in K):
+T2=T1*(p2/p1)^((r-1)/r)
+//Exit velocity(in m/s):
+C2=sqrt(2*1.005*(T1-T2))
+printf("\nRESULT\n")
+printf("\nExit velocity = %f m/s",C2)
\ No newline at end of file diff --git a/32/CH13/EX13.09/13_09.sce b/32/CH13/EX13.09/13_09.sce new file mode 100755 index 000000000..f8527f147 --- /dev/null +++ b/32/CH13/EX13.09/13_09.sce @@ -0,0 +1,36 @@ +//pathname=get_absolute_file_path('13.09.sce')
+//filename=pathname+filesep()+'13.09-data.sci'
+//exec(filename)
+//Force on the plate(in N):
+F=350
+//Initial pressure(in bar):
+p1=8
+//Final pressure(in bar):
+p3=1
+//Throat cross-sectional area(in m^2):
+A2=5*10^(-4)
+//From steam tables:
+h1=2769.1 //kJ/kg
+s1=6.6628 //kJ/kg.K
+s2=s1
+s3=s1
+x2=0.9717
+h2=2685.17 //kJ/kg
+v2=0.3932 //m^3/kg
+x3=0.8238
+h3=2277.6 //kJ/kg
+//Enthalpy change(in kJ/kg):
+h12=h1-h2
+//Velocity at throat(in m/s):
+C2=sqrt(2*h12*10^3)
+//Discharge at throat(in kg/s):
+m=A2*C2/v2
+//Actual exit velocity(in m/s):
+C3a=F/m
+//Theoretical enthalpy drop(in kJ/kg):
+h23=h2-h3
+//Nozzle efficiency:
+n=C3a^2/(2*h23*10^3)
+printf("\nRESULT\n")
+printf("\nDischarge at throat = %f kg/s",m)
+printf("\nNozzle efficiency = %f percent",n*100)
\ No newline at end of file diff --git a/32/CH13/EX13.10/13_10.sce b/32/CH13/EX13.10/13_10.sce new file mode 100755 index 000000000..5c8770283 --- /dev/null +++ b/32/CH13/EX13.10/13_10.sce @@ -0,0 +1,41 @@ +//pathname=get_absolute_file_path('13.10.sce')
+//filename=pathname+filesep()+'13.10-data.sci'
+//exec(filename)
+//Mass flow rate(in kg/s):
+m=5/60
+//Pressure at which steam is discharged(in bar):
+p3=1
+//Initial pressure(in bar):
+p1=10
+//Initial temperature(in K)
+T1=200+273
+//Adiabatic index of compression:
+n=1.3
+//From steam tables:
+h1=2827.9 //kJ/kg
+s1=6.6940 //kJ/kg.K
+v1=0.2060 //m^3/kg
+h2a=2711.23 //kJ/kg
+s2a=6.6749 //kJ/kg.K
+s3=s2a
+h3=2420.08 //kJ/kg
+v3=1.5025 //m^3/kg
+psat=3.44 //bar (at T=138.18 C)
+Tsat=155.12 //C (at p=5.45 bar)
+//Pressure at throat(in bar):
+p2=p1*(2/(n+1))^(n/(n-1))
+//Velocity at exit(in m/s):
+C3=sqrt(2*(h1-h3)*10^3)
+//Exit area(in m^2):
+A3=m*v3/C3
+//Diameter of nozzle at exit(in m):
+d=sqrt(A3*4/%pi)
+//Temperature at throat(in K):
+T2=T1*(p2/p1)^((n-1)/n)
+//Degree of supersaturation:
+d1=p2/psat
+//Amount of undercooling(in C):
+u=Tsat-(T2-273)
+printf("\nRESULT\n")
+printf("\nDegree of supersaturation = %f",d1)
+printf("\nAmount of undercooling = %f C",u)
\ No newline at end of file diff --git a/32/CH13/EX13.11/13_11.sce b/32/CH13/EX13.11/13_11.sce new file mode 100755 index 000000000..46e7b551d --- /dev/null +++ b/32/CH13/EX13.11/13_11.sce @@ -0,0 +1,37 @@ +//pathname=get_absolute_file_path('13.11.sce')
+//filename=pathname+filesep()+'13.11-data.sci'
+//exec(filename)
+//Initial pressure(in bar):
+p1=4
+//Initial temperature(in K):
+T1=180+273
+//Final pressure(in bar):
+p2=1.5
+//Index of compression:
+n=1.3
+//Efficiency due to heat loss:
+nn=0.95
+//Specific heat(in kJ/kg.K):
+C=2.174
+//From steam tables:
+v1=0.5088 //m^3/kg
+Tsat=111.37+273 //K (at p=1.5 bar)
+//Enthalpy at state 1(in kJ/kg):
+h1=p1*v1*10^2+2614
+//Specific volume at state 2(in m^3/kg):
+v2=v1*(p1/p2)^(1/n)
+//Enthalpy at state 2(in kJ/kg):
+h2=p2*v2*10^2+2614
+//Actual heat drop(in kJ/kg):
+dh=nn*(h1-h2)
+printf("\nRESULT\n")
+printf("\nActual heat drop = %f kJ/kg",dh)
+//Temperature at state 2(in K):
+T2=T1*(p2/p1)^((n-1)/n)
+//Temperature rise due to supersaturation:
+dT=(1-nn)*(h1-h2)/C
+//Actual temperature at state 2(in K):
+T2a=T2+dT
+//Amount of undercooling(in C):
+u=Tsat-T2a
+printf("\nAmount of undercooling = %f C",u)
\ No newline at end of file diff --git a/32/CH13/EX13.12/13_12.sce b/32/CH13/EX13.12/13_12.sce new file mode 100755 index 000000000..b33b51966 --- /dev/null +++ b/32/CH13/EX13.12/13_12.sce @@ -0,0 +1,41 @@ +//pathname=get_absolute_file_path('13.12.sce')
+//filename=pathname+filesep()+'13.12-data.sci'
+//exec(filename)
+//Initial pressure(in bar):
+p1=14
+//Initial temperature(in K):
+T1=400+273
+//Number of nozzles:
+N=16
+//Final pressure(in bar):
+p2=10
+//Discharge(in kg/s):
+m=5
+//Nozzle efficiency:
+nn=0.90
+//Inlet velocity(in m/s):
+C1=100
+//Insex of compression:
+n=1.3
+//From steam tables:
+h1=3257.5 //kJ/kg
+s1=7.3026 //kJ/kg.K
+T2=350.46 //C
+h2=3158.7 //kJ/kg
+v2=0.2827 //m^3/kg
+//Actual enthalpy change(inn kJ/kg):
+h12=(h1-h2)*nn
+//Velocity at exit(in m/s):
+C2=sqrt(2*h12*10^3)
+//Cross-sectional area at exit(in cm^2):
+A2=m*v2/(C2*N)*10^4
+//Modified velocity at nozzle exit(in m/s):
+C2a=sqrt(2*h12*10^3+C1^2)
+//Discharge with modified velocity(in kg/s):
+//ma=A2*C2a*N/v2*10^(-4)
+ma=16*2.13*433.41*10^(-4)/0.2827
+//% increase in discharge:
+p=(ma-m)/m*100
+printf("\nRESULT\n")
+printf("\nCross-sectional area at exit of nozzle = %f cm^2",A2)
+printf("\nPercentage increase in discharge = %f percent",p)
\ No newline at end of file diff --git a/32/CH13/EX13.13/13_13.sce b/32/CH13/EX13.13/13_13.sce new file mode 100755 index 000000000..6bbcf6e22 --- /dev/null +++ b/32/CH13/EX13.13/13_13.sce @@ -0,0 +1,50 @@ +//pathname=get_absolute_file_path('13.13.sce')
+//filename=pathname+filesep()+'13.13-data.sci'
+//exec(filename)
+//Initial pressure(in bar):
+p1=20
+//Final pressure(in bar):
+p3=5
+n=1.3
+//From steam tables:
+T1=212.42+273 //K
+Tsat=186.43+273 //K (at 11.6 bar)
+psat=5.452 //bar (at 155.14 C)
+h1=2799.5 //kJ/kg
+v1=0.009963 //m^3/kg
+s1=6.3409 //kJ/kg.K
+s2aa=s1
+h2aa=2693.98 //kJ/kg
+s2a=6.5484 //kJ/kg.K
+s3a=s2a
+h3a=2632.76 //kJ/kg
+s3=s1
+h3=2544.21 //kJ/kg
+//Pressure at throat(in bar):
+p2=p1*0.58
+//Temperature at state 2(in K):
+T2=T1*(p2/p1)^((n-1)/n)
+//Degree of supersaturation:
+d=p2/psat
+//Degree of undercooling:
+d1=Tsat-T2
+printf("\nRESULT\n")
+printf("\nDegree of supersaturation = %f",d)
+printf("\nDegree of undercooling = %f",d1)
+//Isentropic enthalpy drop:
+h12=(n/(n-1))*p1*10^2*v1*(1-(T2/T1))
+//Enthalpy at state 2(in kJ/kg):
+h2=h1-h12
+//Heat drop with no saturation(in kJ/kg):
+h12aa=h1-h2aa
+//Loss of available heat drop(in kJ/kg):
+L=h12aa-h12
+//Increase in entropy(in kJ/kg.K):
+s12a=L/Tsat
+//Loss due to undercooling(in kJ/kg):
+L1=h3a-h3
+//Percentage loss:
+p=L1/(h1-h3)*100
+printf("\n\nEntropy change = %f kJ/kg.K",s12a)
+printf("\nLoss due to undercooling = %f kJ/kg",L1)
+printf("\nPercentage loss = %f percent",p)
\ No newline at end of file diff --git a/32/CH13/EX13.14/13_14.sce b/32/CH13/EX13.14/13_14.sce new file mode 100755 index 000000000..e2794cdf2 --- /dev/null +++ b/32/CH13/EX13.14/13_14.sce @@ -0,0 +1,61 @@ +//pathname=get_absolute_file_path('13.14.sce')
+//filename=pathname+filesep()+'13.14-data.sci'
+//exec(filename)
+//Mass flow rate(in kg/s):
+m1=150/60
+//Height of water level from the axis of injector(in m):
+H=5
+//Pressuer at which steam is injected(in bar):
+p4=20
+//Water level in boiler from the injector(in m):
+Z4=0.8
+//Dryness fraction at state 1:
+x1=0.95
+//Velocity in delivery pipe(in m/s):
+C4=20
+//Atmospheric pressure(in bar):
+p3=1.013
+//Density(in kg/m^3):
+d=10^3
+//Acceleration due to gravity(in m/s^2):
+g=9.81
+//Specific heat of steam(in kJ/kg.K):
+Cps=3.18
+//Specific heat of water(in kJ/kg.K):
+Cpw=4.18
+//From steam tables:
+T1=212.42 //C
+Tw=25 //C
+p2=0.7*p4
+h1=2704.95 //kJ/kg
+hfg1=1890.7 //kJ/kg
+s1=6.1462 //kJ/kg.K
+s2=s1
+x2=0.923
+h2=2639.10 //kJ/kg
+v2=0.13 //m^3/kg
+//Velocity of steam at throat(in m/s):
+C2=sqrt(2*(h1-h2)*10^3)
+//Velocity at state 3(in m/s):
+C3=sqrt(2*(g*Z4+p4*10^5/d+C4^2/2-p3*10^5/d))
+//Mass of water pumped per kg of steam(in kg):
+m=(C2-C3)/(sqrt(2*g*H)+C3)
+printf("\nRESULT\n")
+printf("\nMass of water pumped per kg of steam = %f kg",m)
+//Mass of mixture passing through state 3(in kg/s):
+m3=m1+m1/m
+//Area of throat of mixing nozzle(in cm^2):
+A3=m3/(d*C3)*10^4
+//Diameter of throat of the mixing nozzle(in cm):
+d3=sqrt(A3*4/%pi)
+printf("\nDiameter of throat of the mixing nozzle = %f cm",d3)
+//Mass of steam required for given flow rate(in kg/s):
+ms=m1/m
+//Area at state 2(in cm^2):
+A2=ms*v2/C2*10^4
+//Diameter of throat of steam nozzle(in cm):
+d2=sqrt(A2*4/%pi)
+printf("\nDiameter of throat of steam nozzle = %f cm",d2)
+//Temperature of water coming out of the injector(in C):
+T3=(x1*hfg1+Cps*T1+m*Cpw*Tw)/(m*Cpw+Cps)
+printf("\nTemperature of water coming out of the injector = %f C",T3)
\ No newline at end of file diff --git a/32/CH13/EX13.15/13_15.sce b/32/CH13/EX13.15/13_15.sce new file mode 100755 index 000000000..257ed249d --- /dev/null +++ b/32/CH13/EX13.15/13_15.sce @@ -0,0 +1,38 @@ +//pathname=get_absolute_file_path('13.15.sce')
+//filename=pathname+filesep()+'13.15-data.sci'
+//exec(filename)
+//Pressure at which steam is generated(in bar):
+p4=20
+//Pressure at inlet(in bar):
+p1=1.5
+//Dryness fraction:
+x1=0.9
+//Mass of water taken from feed water tank(in kg/hr):
+M=5000
+//Density(in kg/m^3):
+d=10^3
+//From steam tables:
+h1=2470.96 //kJ/kg
+s1=6.6443 //kJ/kg.K
+s2=s1
+x2=0.88
+h2=2396.72 //kJ/kg
+v2=1.7302 //m^3/kg
+//Steam velocity(in m/s):
+C2=sqrt(2*(h1-h2)*10^3)
+//Velocity at 3(in m/s):
+C3=sqrt(1.2*p4*2*10^5/d)
+//Mass entrained per kg of steam:
+m=C2/C3-1
+//Mass of steam supplied per second(in kg/s):
+ms=M/(3600*m)
+//Area of steam nozzle(in cm^2):
+A2=ms*v2/C2*10^4
+//Total discharge from injector(in kg/s):
+D=M/3600+ms
+//Area of discharge orifice(in cm^2):
+A=D/(C3*d)*10^4
+printf("\nRESULT\n")
+printf("\nMass of water pumped per kg of steam = %f kg water/kg of steam",m)
+printf("\nArea of steam nozzle = %f cm^2",A2)
+printf("\nArea of discharge orifice = %f cm^2",A)
\ No newline at end of file |