diff options
Diffstat (limited to '2873/CH9/EX9.11/Ex9_11.sce')
-rwxr-xr-x | 2873/CH9/EX9.11/Ex9_11.sce | 75 |
1 files changed, 75 insertions, 0 deletions
diff --git a/2873/CH9/EX9.11/Ex9_11.sce b/2873/CH9/EX9.11/Ex9_11.sce new file mode 100755 index 000000000..ef19b6b2a --- /dev/null +++ b/2873/CH9/EX9.11/Ex9_11.sce @@ -0,0 +1,75 @@ +// Display mode
+mode(0);
+// Display warning for floating point exception
+ieee(1);
+clear;
+clc;
+disp("Engineering Thermodynamics by Onkar Singh Chapter 9 Example 11")
+P1=1*10^5;//initial pressure in Pa
+T1=(27+273);//initial temperature in K
+T3=T1;
+r=10;//pressure ratio
+T5=1000;//maximum temperature in cycle in K
+P6=3*10^5;//first stage expansion pressure in Pa
+T7=995;//first stage reheated temperature in K
+C=42000;//calorific value of fuel in KJ/kg
+Cp=1.0032;//specific heat at constant pressure in KJ/kg K
+m=30;//air flow rate in kg/s
+nc=0.85;//isentropic efficiency of compression
+ne=0.9;//isentropic efficiency of expansion
+y=1.4;//expansion constant
+disp("for perfect intercooling the pressure ratio of each compression stage(k)")
+disp("k=sqrt(r)")
+k=sqrt(r)
+k=3.16;//approx.
+disp("for process 1-2_a,T2_a/T1=(P2/P1)^((y-1)/y)")
+disp("so T2_a=T1*(k)^((y-1)/y)in K")
+T2_a=T1*(k)^((y-1)/y)
+disp("considering isentropic efficiency of compression,")
+disp("nc=(T2_a-T1)/(T2-T1)")
+disp("so T2=T1+((T2_a-T1)/nc)in K")
+T2=T1+((T2_a-T1)/nc)
+disp("for process 3-4,")
+disp("T4_a/T3=(P4/P3)^((y-1)/y)")
+disp("so T4_a=T3*(P4/P3)^((y-1)/y) in K")
+T4_a=T3*(k)^((y-1)/y)
+disp("again due to compression efficiency,nc=(T4_a-T3)/(T4-T3)")
+disp("so T4=T3+((T4_a-T3)/nc)in K")
+T4=T3+((T4_a-T3)/nc)
+disp("total compressor work,Wc=2*Cp*(T4-T3) in KJ/kg")
+Wc=2*Cp*(T4-T3)
+disp("for expansion process 5-6_a,")
+disp("T6_a/T5=(P6/P5)^((y-1)/y)")
+disp("so T6_a=T5*(P6/P5)^((y-1)/y) in K")
+P5=10*10^5;//pressure in Pa
+T6_a=T5*(P6/P5)^((y-1)/y)
+disp("considering expansion efficiency,ne=(T5-T6)/(T5-T6_a)")
+disp("T6=T5-(ne*(T5-T6_a)) in K")
+T6=T5-(ne*(T5-T6_a))
+disp("for expansion in 7-8_a")
+disp("T8_a/T7=(P8/P7)^((y-1)/y)")
+disp("so T8_a=T7*(P8/P7)^((y-1)/y) in K")
+P8=P1;//constant pressure process
+P7=P6;//constant pressure process
+T8_a=T7*(P8/P7)^((y-1)/y)
+disp("considering expansion efficiency,ne=(T7-T8)/(T7-T8_a)")
+disp("so T8=T7-(ne*(T7-T8_a))in K")
+T8=T7-(ne*(T7-T8_a))
+disp("expansion work output per kg of air(Wt)=Cp*(T5-T6)+Cp*(T7-T8) in KJ/kg")
+Wt=Cp*(T5-T6)+Cp*(T7-T8)
+disp("heat added per kg air(q_add)=Cp*(T5-T4)+Cp*(T7-T6) in KJ/kg")
+q_add=Cp*(T5-T4)+Cp*(T7-T6)
+disp("fuel required per kg of air,mf=q_add/C")
+mf=q_add/C
+disp("air-fuel ratio=1/mf")
+1/mf
+disp("net output(W)=Wt-Wc in KJ/kg")
+W=Wt-Wc
+disp("output for air flowing at 30 kg/s,=W*m in KW")
+W*m
+disp("thermal efficiency=W/q_add")
+W/q_add
+disp("in percentage")
+W*100/q_add
+disp("so thermal efficiency=27.87%,net output=6876.05 KW,A/F ratio=51.07")
+disp("NOTE=>In this question,expansion work is calculated wrong in book,so it is corrected above and answers vary accordingly.")
|