summaryrefslogtreecommitdiff
path: root/2870/CH4
diff options
context:
space:
mode:
Diffstat (limited to '2870/CH4')
-rwxr-xr-x2870/CH4/EX4.10/Ex4_10.sce35
-rwxr-xr-x2870/CH4/EX4.11/Ex4_11.sce28
-rwxr-xr-x2870/CH4/EX4.12/Ex4_12.sce22
-rwxr-xr-x2870/CH4/EX4.13/Ex4_13.sce15
-rwxr-xr-x2870/CH4/EX4.14/Ex4_14.sce29
-rwxr-xr-x2870/CH4/EX4.15/Ex4_15.sce12
-rwxr-xr-x2870/CH4/EX4.2/Ex4_2.sce17
-rwxr-xr-x2870/CH4/EX4.3/Ex4_3.sce12
-rwxr-xr-x2870/CH4/EX4.4/Ex4_4.sce27
-rwxr-xr-x2870/CH4/EX4.5/Ex4_5.sce31
-rwxr-xr-x2870/CH4/EX4.6/Ex4_6.sce40
-rwxr-xr-x2870/CH4/EX4.7/Ex4_7.sce34
-rwxr-xr-x2870/CH4/EX4.8/Ex4_8.sce28
-rwxr-xr-x2870/CH4/EX4.9/Ex4_9.sce24
14 files changed, 354 insertions, 0 deletions
diff --git a/2870/CH4/EX4.10/Ex4_10.sce b/2870/CH4/EX4.10/Ex4_10.sce
new file mode 100755
index 000000000..04ba1e8cf
--- /dev/null
+++ b/2870/CH4/EX4.10/Ex4_10.sce
@@ -0,0 +1,35 @@
+clc;clear;
+//Example 4.10
+
+//given data
+P1=150;
+P2=350;
+T1=27+273;//in K
+V1=400/1000;// in m^3
+R=0.287;
+
+//from Table A–17
+u1=214.07;
+u2=1113.52;
+
+//calculations
+
+//part a
+V2=2*V1;
+//using ideal gas eqn
+// P1 * V1 / T1 = P2 * T2 /V2
+T2=P2*V2*T1/(P1*V1);
+disp(T2,'the final temperature in K');
+
+//part b
+// Work done is Pdv
+W=P2*(V2-V1);
+disp(W,'the work done by the air im kPa');
+
+//part c
+//Ein - Eout = Esystem
+//Qin - Wout = dU = m(u2 - u1)
+m= P1* V1 /(T1 * R);
+Q= m*(u2 - u1)+ W;
+Q=ceil(Q);
+disp(Q,'the total heat transferred to the air in kJ')
diff --git a/2870/CH4/EX4.11/Ex4_11.sce b/2870/CH4/EX4.11/Ex4_11.sce
new file mode 100755
index 000000000..21b2e3266
--- /dev/null
+++ b/2870/CH4/EX4.11/Ex4_11.sce
@@ -0,0 +1,28 @@
+clc;clear;
+//Example 4.11
+
+//given data
+T=100;
+P=15;
+
+//from Table A–7
+//at P=15 mPa and T = 100 C
+hg=430.39;
+hf=419.17
+vf=0.001;
+Psat=101.42;//in kPa
+
+//calculations
+
+//part a
+h=hg;
+disp(h,'enthalpy of liquid water by using compressed liquid tables in kJ/kg');
+
+//part b
+//Approximating the compressed liquid as a saturated liquid at 100°C
+h=hf;
+disp(h,'enthalpy of liquid water by approximating it as a saturated liquid in kJ/kg');
+
+//part c
+h=hf + vf*(P*1000 - Psat );
+disp(h,'enthalpy of liquid water by using the correction given by Eq. 4–38 in kJ/kg');
diff --git a/2870/CH4/EX4.12/Ex4_12.sce b/2870/CH4/EX4.12/Ex4_12.sce
new file mode 100755
index 000000000..22dce4421
--- /dev/null
+++ b/2870/CH4/EX4.12/Ex4_12.sce
@@ -0,0 +1,22 @@
+clc;clear;
+//Example 4.12
+
+//given dara
+mi=50;
+T1i=80;//suffix i for iron
+Vw=0.5;
+T1w=25;//suffix w for water
+v=0.001;//specific volume of liquid water at or about room temperature
+
+//from Table A–3
+ci=0.45;
+cw=4.18;
+
+//calculations
+mw=Vw/v;
+//Ein - Eout = Esystem
+// du = 0 i.e (mcdT)iron + (mcdT)water = 0
+// mi * ci * (T - T1i) + mw *cw * (T-T1w)
+//on rearranging above equn
+T= (mi*ci*T1i + mw*cw*T1w)/(mi*ci+mw*cw);
+disp(T,'the temperature when thermal equilibrium is reached in C')
diff --git a/2870/CH4/EX4.13/Ex4_13.sce b/2870/CH4/EX4.13/Ex4_13.sce
new file mode 100755
index 000000000..055077204
--- /dev/null
+++ b/2870/CH4/EX4.13/Ex4_13.sce
@@ -0,0 +1,15 @@
+clc;clear;
+//Example 4.13
+
+//given data
+maf=0.15;
+caf=3.8;
+dTaf=1.8;//suffix af for affected tissue
+mh=1.2;///suffix h for hand
+
+//calculations
+//Ein - Eout = Esystem
+//dUaffected tissue - KEhand = 0
+//from above equation we can deduce that
+Vhand= sqrt(2*maf*caf*dTaf*1000/mh);//for conversion factor mutiplying by 1000 to get m^2/s^2
+disp(Vhand,'the velocity of the hand just before impact in m/s');
diff --git a/2870/CH4/EX4.14/Ex4_14.sce b/2870/CH4/EX4.14/Ex4_14.sce
new file mode 100755
index 000000000..eeaba23d5
--- /dev/null
+++ b/2870/CH4/EX4.14/Ex4_14.sce
@@ -0,0 +1,29 @@
+clc;clear;
+//Example 4.14
+
+//given data
+m=90;
+
+//from Tables 4–1 and 4–2
+Ehb=275;//hamburger
+Ef=250;//fries
+Ec=87;//cola
+
+//calculation
+
+//part a
+Ein=2*Ehb+Ef+Ec;
+//The rate of energy output for a 68-kg man watching TV is to be 72 Calories/h
+Eout=m*72/68;
+t=Ein/Eout;
+disp(t,'by watching TV in hours');
+
+//part b
+//The rate of energy output for a 68-kg man watching TV is to be 860 Calories/h
+Eout=m*860/68;
+t=Ein/Eout*60//converting in min
+t=ceil(t);
+disp(t,'by fast swimming in mins');
+
+//for last question
+disp('answers be for a 45-kg man energy takes twice as long in each case');
diff --git a/2870/CH4/EX4.15/Ex4_15.sce b/2870/CH4/EX4.15/Ex4_15.sce
new file mode 100755
index 000000000..d9975d0e4
--- /dev/null
+++ b/2870/CH4/EX4.15/Ex4_15.sce
@@ -0,0 +1,12 @@
+clc;clear;
+//Example 4.15
+
+//given data
+E=75;//in Cal/day
+
+//calculation
+Ereduced=E*365;
+//The metabolizable energy content of 1 kg of body fat is 33,100 kJ
+Ec=33100;
+mfat=Ereduced/Ec*4.1868;
+disp(mfat,'weight this person will lose in one year in kg')
diff --git a/2870/CH4/EX4.2/Ex4_2.sce b/2870/CH4/EX4.2/Ex4_2.sce
new file mode 100755
index 000000000..e1818aaba
--- /dev/null
+++ b/2870/CH4/EX4.2/Ex4_2.sce
@@ -0,0 +1,17 @@
+clc;clear;
+//Example 4.2
+
+//given values
+m=10;
+Po=60;
+T1=320;
+T2=400;
+
+//from Table A–6E
+v1=7.4863;//at 60 psia and 320 F
+v2=8.3548;//at 60 psia and 400 F
+
+//calculations
+//W = P dV which on integrating gives W = m * P * (V2 - V1)
+W=m*Po*(v2-v1)/5.404;//coverting into Btu from psia-ft^3
+disp(W,'work done by the steam during this process in Btu')
diff --git a/2870/CH4/EX4.3/Ex4_3.sce b/2870/CH4/EX4.3/Ex4_3.sce
new file mode 100755
index 000000000..e3ff94cea
--- /dev/null
+++ b/2870/CH4/EX4.3/Ex4_3.sce
@@ -0,0 +1,12 @@
+clc;clear;
+//Example 4.3
+
+//given data
+P1=100;
+V1=0.4;
+V2=0.1;
+
+//calculations
+//for isothermal W = P1*V1* ln(V2/V1)
+W=P1*V1*log(V2/V1);
+disp(W,'the work done during this process in kJ')
diff --git a/2870/CH4/EX4.4/Ex4_4.sce b/2870/CH4/EX4.4/Ex4_4.sce
new file mode 100755
index 000000000..07406eca6
--- /dev/null
+++ b/2870/CH4/EX4.4/Ex4_4.sce
@@ -0,0 +1,27 @@
+clc;clear;
+//Example 4.4
+
+//given data
+V1=0.05;
+P1=200;
+k=150;
+A=0.25;
+
+//calculations
+
+//Part - a
+V2=2*V1;
+x2=(V2-V1)/A;//displacement of spring
+F=k*x2;//compression force
+P2=P1+F/A;//additional pressure is equivalent the compression of spring
+disp(P2,'the final pressure inside the cylinder in kPa');
+
+//Part - b
+//work done is equivalent to the area of the P-V curve of Fig 4-10
+W=(P1+P2)/2*(V2-V1);//area of trapezoid = 1/2 * sum of parallel sides * dist. b/w them
+disp(W,'the total work done by the gas in kJ');
+
+//Part - c
+x1=0;//intial compression of spring
+Wsp=0.5*k*(x2^2-x1^2);
+disp(Wsp,'the fraction of this work done against the spring to compress it in kJ')
diff --git a/2870/CH4/EX4.5/Ex4_5.sce b/2870/CH4/EX4.5/Ex4_5.sce
new file mode 100755
index 000000000..b552a0480
--- /dev/null
+++ b/2870/CH4/EX4.5/Ex4_5.sce
@@ -0,0 +1,31 @@
+clc;clear;
+//Example 4.5
+
+//given values
+m=0.025;
+V=120;
+I=0.2;
+t=300;//total time taken in sec
+P1=300;
+Qout=3.7;
+
+//from Table A–5
+//at P1 the conditon is sat. vap
+h1=2724.9;
+
+//Calculations
+
+//Part - a
+//therotical proving
+
+//Part - b
+We=V*I*t/1000;//electrical work in kJ
+//from eqn 4 -18 i.e derived in earler part
+//it states it Ein - Eout = Esystem
+// it applies as Win - Qout = H = m (h2 - h1)
+h2=(We-Qout)/m+h1;
+////from Table A–5
+//at h2 we get
+P2=300;
+T=200;
+disp(T,'the final temperature of the steam in C')
diff --git a/2870/CH4/EX4.6/Ex4_6.sce b/2870/CH4/EX4.6/Ex4_6.sce
new file mode 100755
index 000000000..5f05ec570
--- /dev/null
+++ b/2870/CH4/EX4.6/Ex4_6.sce
@@ -0,0 +1,40 @@
+clc;clear;
+//Example 4.6
+
+//given data
+m=5;
+P1=200;
+T=25;
+
+//from Table A–4
+//the liq. is in compressed state at 200 kPa and 25 C
+vf=0.001;
+vg=43.340;
+uf=104.83;
+ufg=2304.3;
+v1=vf;
+u1=uf;
+
+//calculations
+
+//Part - a
+V1=m*v1;
+Vtank=2*V1;
+disp(Vtank,'the volume of the tank in m^3');
+
+//Part - b
+V2=Vtank;
+v2=V2/m;
+//from Table A–4
+// at T=25 vf=0.101003 m^3/kg and vg=43.340 m^3/kg
+// vf<v2<vg therefore it is saturated liquid–vapor mixture
+P2=3.1698;
+disp(P2,'the final pressure in kPa');
+
+//Part - c
+//Ein - Eout = Esystem
+//Qin= dU = m(u2 - u1)
+x2=(v2-vf)/(vg-vf);
+u2=uf+x2*ufg;
+Qin=m*(u2 - u1);
+disp(Qin,'the heat transfer for this process in kJ')
diff --git a/2870/CH4/EX4.7/Ex4_7.sce b/2870/CH4/EX4.7/Ex4_7.sce
new file mode 100755
index 000000000..be93dddf1
--- /dev/null
+++ b/2870/CH4/EX4.7/Ex4_7.sce
@@ -0,0 +1,34 @@
+clc;clear;
+//Example 4.7
+
+//given data
+T1=300;
+P=200;
+T2=600;
+M=28.97;
+Ru=8.314;
+
+//Part - a
+//from Table A–17
+u1=214.07;
+u2=434.78;
+du=u2-u1;//change in internal energy
+disp(du,'change in internal energy from data from the air table in kJ/kg');
+
+//Part - b
+//from Table A–2c
+a=28.11;
+b=0.1967*10^-2;
+c=0.4802*10^-5;
+d=-1.966*10^-9;
+// by equation Cp(T)=a+bT+cT^2+dT^3
+dubar=integrate('(a-Ru)+b*T+c*T^2+d*T^3','T',T1,T2);//integrant
+du=dubar/M;
+disp(du,'change in internal energy the functional form of the specific heat in kJ/kg');
+
+//Part - c
+//from Table A–2b
+Cavg=0.733;
+du=Cavg*(T2-T1);
+du=ceil(du);
+disp(du,'change in internal energy the functional form the average specific heat value in kJ/kg');
diff --git a/2870/CH4/EX4.8/Ex4_8.sce b/2870/CH4/EX4.8/Ex4_8.sce
new file mode 100755
index 000000000..896e5c719
--- /dev/null
+++ b/2870/CH4/EX4.8/Ex4_8.sce
@@ -0,0 +1,28 @@
+clc;clear;
+//Example 4.8
+
+//given data
+m=1.5;
+T1=80;
+P1=50;
+W=0.02;
+t=30/60;//convertinginto hrs from min
+
+//from Table A–2Ea
+Cv=0.753;
+
+//calculations
+
+//part a
+Wsh=W*t*2545;//in Btu
+//Ein - Eout = Esystem
+//Wsh = dU = m (u2 - u1) = m * Cv * (T2 - T1)
+T2= Wsh/(m*Cv)+T1;
+disp(T2,'the final temperature in F');
+
+//part b
+//using ideal gas eqn
+// P1 * V1 / T1 = P2 * T2 /V2
+P2= 50 * (T2 +460)/ (T1+460);
+// temp should in R therefore + 460
+disp(P2,'the final pressure in psia')
diff --git a/2870/CH4/EX4.9/Ex4_9.sce b/2870/CH4/EX4.9/Ex4_9.sce
new file mode 100755
index 000000000..a7855cc96
--- /dev/null
+++ b/2870/CH4/EX4.9/Ex4_9.sce
@@ -0,0 +1,24 @@
+clc;clear;
+//Example 4.9
+
+//given data
+V1=0.5;
+P=400;
+T1=27;
+I=2;
+t=5*60;//converting into s from min
+V=120;
+Qout=2800/1000;//in kJ
+R=0.297;
+
+//from Table A–2a
+Cp=1.039;
+
+//calculations
+P1=P;
+We=V*I*t/1000;//in kJ
+m=P1*V1/(R*(T1+273));
+//Ein - Eout = Esystem
+// We,in - Qout = dH = m (h2 - h1) = m * Cp * (T2 - T1)
+T2=(We-Qout)/(m*Cp)+T1;
+disp(T2,'the final temperature of nitrogen in C')