summaryrefslogtreecommitdiff
path: root/2870/CH3/EX3.13/Ex3_13.sce
diff options
context:
space:
mode:
Diffstat (limited to '2870/CH3/EX3.13/Ex3_13.sce')
-rwxr-xr-x2870/CH3/EX3.13/Ex3_13.sce58
1 files changed, 58 insertions, 0 deletions
diff --git a/2870/CH3/EX3.13/Ex3_13.sce b/2870/CH3/EX3.13/Ex3_13.sce
new file mode 100755
index 000000000..b2ea5d7a9
--- /dev/null
+++ b/2870/CH3/EX3.13/Ex3_13.sce
@@ -0,0 +1,58 @@
+clc;clear;
+//Example 3.13
+//Answer of part c-d are having slight difference due to approximation in molar volumne in the textbook which here is caluculated to the approximation of 7 decimal digits
+
+//given values
+T=175;
+v=0.00375;
+Pex=10000;//experimentaion determination
+
+//from Table A-1
+R=0.2968// in kPa m^3/kg K
+
+//calculating
+
+//Part-a
+P=R*T/v;
+disp(round(P),'using the ideal-gas equation of state in kPa')
+e=(P-Pex)/Pex*100;
+disp(e,'error is');
+
+
+//Part-b
+//van der Waals constants from Eq. 3-23
+a=0.175;
+b=0.00138;
+//from van der waal eq.
+P=R*T/(v-b)-a/v^2;
+disp(round(P),'using the van der Waals equation of state,');
+e=(P-Pex)/Pex*100;
+disp(e,'error is');
+
+//Part-c
+//constants in the Beattie-Bridgeman equation from Table 3–4
+A=102.29;
+B=0.05378;
+c=4.2*10^4;
+Ru=8.314;//in kPa m^3/kmol K
+M=28.013;//molecular weight in kg/mol
+vb=M*v;//molar vol.
+P=(Ru*T)/(vb^2)*(1-((c)/(vb*T^3)))*(vb+B)-(A/vb^2);
+disp(round(P),'using the Beattie-Bridgeman equation');
+e=(P-Pex)/Pex*100;
+disp(e,'error is');
+
+//Part-d
+//constants of Benedict-Webb-Rubin equation from Table 3–4
+a=2.54;
+b=0.002328;
+c=7.379*10^4;
+alp=1.272*10^-4;
+Ao=106.73;
+Bo=0.040704;
+Co=8.164*10^5;
+gam=0.0053;
+P= ((Ru*T)/vb) + ( (Bo*Ru*T) - Ao - Co/T^2 )/ vb^2 + (b*Ru*T-a)/vb^3 +( a*alp/vb^6) + (c/(vb^3*T^2)) * (1 + (gam/vb^2)) * exp(-gam/vb^2);
+disp(round(P),'using Benedict-Webb-Rubin equation');
+e=(P-Pex)/Pex*100;
+disp(e,'error is')