summaryrefslogtreecommitdiff
path: root/2870/CH13/EX13.2/Ex13_2.sce
diff options
context:
space:
mode:
Diffstat (limited to '2870/CH13/EX13.2/Ex13_2.sce')
-rwxr-xr-x2870/CH13/EX13.2/Ex13_2.sce64
1 files changed, 64 insertions, 0 deletions
diff --git a/2870/CH13/EX13.2/Ex13_2.sce b/2870/CH13/EX13.2/Ex13_2.sce
new file mode 100755
index 000000000..e6f0d69d9
--- /dev/null
+++ b/2870/CH13/EX13.2/Ex13_2.sce
@@ -0,0 +1,64 @@
+clc;clear;
+//Example 13.2
+
+//given data
+NN2=2;
+NCO2=6;
+Tm=300;
+Pm=15000;
+
+//constants used
+Ru=8.314;//in kJ/kmol - K
+
+//calculations
+
+//part - a
+Nm=NN2+NCO2;
+Vm=Nm*Ru*Tm/Pm;
+disp(Vm,'the volume of the tank on the basis of the ideal-gas equation of state in m^3');
+
+//part - b
+//from Table A-1
+//for nitrogen
+TcrN=126.2;
+PcrN=3390;
+//for Carbondioxide
+TcrC=304.2;
+PcrC=7390;
+yN2=NN2/Nm;
+yCO2=NCO2/Nm;
+Tcr=yN2*TcrN+yCO2*TcrC;
+Pcr=yN2*PcrN+yCO2*PcrC;
+Tr=Tm/Tcr;
+Pr=Pm/Pcr;
+//from Fig A-15b
+Zm=0.49;
+Vm=Zm*Nm*Ru*Tm/Pm;
+disp(Vm,'the volume of the tank on the basis Kay’s rule in m^3');
+
+//part - c
+//for nitrogen
+TrN=Tm/TcrN;
+PrN=Pm/PcrN;
+//from Fig A-15b
+Zn=1.02;
+//for Carbondioxide
+TrC=Tm/TcrC;
+PcrC=Pm/PcrC;
+//from Fig A-15b
+Zc=0.3;
+Zm=yN2*Zn+yCO2*Zc;
+Vm=Zm*Nm*Ru*Tm/Pm;
+disp(Vm,'the volume of the tank on the basis compressibility factors and Amagat’s law in m^3');
+
+//part - d
+VRN=(Vm/NN2)/(Ru*TcrN/PcrN);
+VRC=(Vm/NCO2)/(Ru*TcrC/PcrC);
+//from Fig A-15b
+Zn=0.99;
+Zc=0.56;
+Zm=yN2*Zn+yCO2*Zc;
+Vm=Zm*Nm*Ru*Tm/Pm;
+//When the calculations are repeated we obtain 0.738 m3 after the second iteration, 0.678 m3 after the third iteration, and 0.648 m3 after the fourth iteration.
+Vm=0.648;
+disp(Vm,'compressibility factors and Dalton’s law the volume of the tank on the basis in m^3');