summaryrefslogtreecommitdiff
path: root/278/CH8
diff options
context:
space:
mode:
Diffstat (limited to '278/CH8')
-rwxr-xr-x278/CH8/EX8.1/ex_8_1.sce37
-rwxr-xr-x278/CH8/EX8.2/ex_8_2.sce12
-rwxr-xr-x278/CH8/EX8.3/ex_8_3.sce27
-rwxr-xr-x278/CH8/EX8.4/ex_8_4.sce27
-rwxr-xr-x278/CH8/EX8.5/ex_8_5.sce32
5 files changed, 135 insertions, 0 deletions
diff --git a/278/CH8/EX8.1/ex_8_1.sce b/278/CH8/EX8.1/ex_8_1.sce
new file mode 100755
index 000000000..d96e35216
--- /dev/null
+++ b/278/CH8/EX8.1/ex_8_1.sce
@@ -0,0 +1,37 @@
+//calculate radial and tangential stress
+clc
+//solution
+//given
+di=200//mm
+ri=100//mm
+t=50//mm
+p=5//N/mm^2
+ro=ri+t//mm
+//f=[p*(ri)^2]*[1+ro^2/x^2]*[1/(ro^2-ri^2)]
+//x is radius at which stress is found out
+//f=4*[1+(ro^2/(x^2))]//N/mm^2//tangential stress at distance x
+f1=4*[1+(150^2/(100^2))]//N/mm^2
+f2=4*[1+(150^2/(110^2))]//N/mm^2
+f3=4*[1+(150^2/(120^2))]//N/mm^2
+f4=4*[1+(150^2/(130^2))]//N/mm^2
+f5=4*[1+(150^2/(140^2))]//N/mm^2
+f6=4*[1+(150^2/(150^2))]//N/mm^2
+//f=4*[1-(ro^2/(x^2))]//radial stress at distance x
+r1=4*[1-(150^2/(100^2))]//N/mm^2
+r2=4*[1-(150^2/(110^2))]//N/mm^2
+r3=4*[1-(150^2/(120^2))]//N/mm^2
+r4=4*[1-(150^2/(130^2))]//N/mm^2
+r5=4*[1-(150^2/(140^2))]//N/mm^2
+r6=4*[1-(150^2/(150^2))]//N/mm^2
+printf("the tangential stress at distance x=100mm is,%f N/mm^2\n",f1)
+printf("the tangential stress at distance x=110mm is,%f N/mm^2\n",f2)
+printf("the tangential stress at distance x=120mm is,%f N/mm^2\n",f3)
+printf("the tangential stress at distance x=130mm is,%f N/mm^2\n",f4)
+printf("the tangential stress at distance x=140mm is,%f N/mm^2\n",f5)
+printf("the tangential stress at distance x=150mm is,%f N/mm^2\n",f6)
+printf("the radial stress at distance x=100mm is,%f N/mm^2\n ",r1)
+printf("the radial stress at distance x=110mm is,%f N/mm^2\n ",r2)
+printf("the radial stress at distance x=120mm is,%f N/mm^2\n ",r3)
+printf("the radial stress at distance x=130mm is,%f N/mm^2\n ",r4)
+printf("the radial stress at distance x=140mm is,%f N/mm^2\n ",r5)
+printf("the radial stress at distance x=150mm is,%f N/mm^2\n ",r6) \ No newline at end of file
diff --git a/278/CH8/EX8.2/ex_8_2.sce b/278/CH8/EX8.2/ex_8_2.sce
new file mode 100755
index 000000000..8da55666c
--- /dev/null
+++ b/278/CH8/EX8.2/ex_8_2.sce
@@ -0,0 +1,12 @@
+//find inside diameter of pipe and wall thickness
+clc
+//solution
+//given
+Q=40//m^3/min
+p=1.4//N/mm^2
+v=1800//m/min
+f=40//N/mm^2
+D=1.13*sqrt(40/1800)//m
+t=(p*D)/(2*f)+0.003//m
+printf("the inside diameter is,%f m\n ",D)
+printf("the wall thickness is,%f m",t)
diff --git a/278/CH8/EX8.3/ex_8_3.sce b/278/CH8/EX8.3/ex_8_3.sce
new file mode 100755
index 000000000..d5999c609
--- /dev/null
+++ b/278/CH8/EX8.3/ex_8_3.sce
@@ -0,0 +1,27 @@
+//find out dimension of joint
+clc
+//solution
+//given
+D=250//mm
+p=0.7//N/mm^2
+//ref table 8.1,foa cast iron ft=14//N/mm^2
+ft=14//N/mm^2
+//table 8.2,C=9 mm//
+C=9//mm
+pi=3.14
+t=(p*D)/(2*ft)+C//mm
+d=0.75*t + 10//mm//nominal dia of bolts
+n=0.0275*D+1.6//mm//numbr of bolts
+tf=1.5*t+3//mm//thickness of flanges
+B=2.3*d//mm//width of flange
+Do=D+2*t+2*B//mm//outside dia of flange
+Dp=D+2*t+2*d+12//mm
+Pc=pi*Dp/n//mm
+printf("the thickness of pipe is,%f mm\n",t)
+printf("the nominal diameter of bolts is,%f mm\n",d)
+printf("the number of bolts is,%f \n",n)
+printf("the thickness of flanges is,%f mm\n",tf)
+printf("the width of flange is,%f mm\n",B)
+printf("the outside dia of flange is,%f mm\n",Do)
+printf("the pitch circle diameter is,%f mm\n",Dp)
+printf("the circumferencial pitch is,%f mm",Pc) \ No newline at end of file
diff --git a/278/CH8/EX8.4/ex_8_4.sce b/278/CH8/EX8.4/ex_8_4.sce
new file mode 100755
index 000000000..30fb21c4b
--- /dev/null
+++ b/278/CH8/EX8.4/ex_8_4.sce
@@ -0,0 +1,27 @@
+//find working stress in flange
+clc
+//solution
+//given
+//refer fig 8.12
+D=200//mm
+p=0.35//N/mm^2
+n=8
+d=16//mm
+Dp=290//mm
+tf=20//mm
+//using table ft=14//N/mm^2 ,table 8.2 gives C=9mm
+C=9//mm
+ft=14//N/mm^2
+t=(p*D/(2*ft))+C//mm
+d1=d+2//mm//dia of bolts
+D1=Dp-d1//mm
+pi=3.14
+F=(pi/4)*[D1]^2*p//N//force acting to separate flanges
+x=90//mm
+y=[Dp/2]-[D/2+t]//mm
+//let fb be working stress
+M=F*y/n//N-mm
+//Mr=fb*Z=(1/6)*x*(tf)^2=6000*fb
+//M=6000*fb
+fb=M/6000//N/mm^2
+printf("the working stress is ,%f N/mm^2",fb) \ No newline at end of file
diff --git a/278/CH8/EX8.5/ex_8_5.sce b/278/CH8/EX8.5/ex_8_5.sce
new file mode 100755
index 000000000..f7e3147c5
--- /dev/null
+++ b/278/CH8/EX8.5/ex_8_5.sce
@@ -0,0 +1,32 @@
+//design oval flanged pipe
+clc
+//solution
+//given
+D=50//mm
+R=25//mm
+p=7//N/mm^2
+pi=3.14
+ft=20//N/mm^2
+fb=60//N/mm^2
+//t=R*[sqrt[(ft+p)/(ft-p)]-1]//mm//thickneess of pipe
+t=R*{sqrt[27/13]-1}//mm
+w=10//mm//width of packing
+D1=D+(2*w)//mm
+F=(pi/4)*(D1)^2*p//N
+Fb=F/2//force on bolts
+//let dc be diameter of bolts
+//Fb=(pi/4)*(dc)^2*fb
+dc=sqrt(13471.5/47.2)//mm
+d=dc/0.84//mm
+Do=D+(2*t)+(4.6*d)//mm//outer diameter of flange
+Dp=Do-(3*t+20)//mm//pitch dia of bolts
+b=89//mm
+e=33//mm
+Mxx=Fb*e//N-mm
+//Z=(1/6)*b*(tf)^2
+//Mxx=ft*14.83*tf^2
+tf=sqrt(444560/296.6)//mm
+printf("the thickness of pipe is,%f mm\n",t)
+printf("the nominal dia is,%f mm\n",d)
+printf("the outer diameter of flange is,%f mm\n",Do)
+printf("the thickness of flange is,%f mm",tf)