diff options
Diffstat (limited to '2762/CH5')
-rwxr-xr-x | 2762/CH5/EX5.2.1/5_2_1.sce | 44 | ||||
-rwxr-xr-x | 2762/CH5/EX5.2.2/5_2_2.sce | 20 | ||||
-rwxr-xr-x | 2762/CH5/EX5.3.3/5_3_3.sce | 23 | ||||
-rwxr-xr-x | 2762/CH5/EX5.3.4/5_3_4.sce | 31 | ||||
-rwxr-xr-x | 2762/CH5/EX5.5.1/5_5_1.sce | 24 | ||||
-rwxr-xr-x | 2762/CH5/EX5.5.2/5_5_2.sce | 16 |
6 files changed, 158 insertions, 0 deletions
diff --git a/2762/CH5/EX5.2.1/5_2_1.sce b/2762/CH5/EX5.2.1/5_2_1.sce new file mode 100755 index 000000000..e59ff9048 --- /dev/null +++ b/2762/CH5/EX5.2.1/5_2_1.sce @@ -0,0 +1,44 @@ +//Transport Processes and Seperation Process Principles
+//Chapter 5
+//Example 5.2-1
+//Principles of Unsteady State Heat Transfer
+//given data
+//english units
+r=1/12;//radius
+x1=r/3;//ratio of volume to area
+h=2;//convective coefficient
+k=25;//thermal conductivity
+Bi=(h*x1)/k;//biot number
+Cp=0.11;//specific heat
+rho=490;//density
+
+if(Bi<0.1)
+ M=h/(Cp*rho*x1);
+ Tinf=250;//constant temp
+ T0=800;//initial temp
+ t=1;
+ T=((T0-Tinf)*((2.718)^(-M*t)))+Tinf;//solving arhenius equation
+ mprintf("the temp in english units %f deg F",T)
+else
+ mprintf("some other method must be employed")
+end
+//si units
+rsi=25.4/1000;
+x1si=rsi/3;
+hsi=11.36;
+ksi=43.3;
+Bisi=(hsi*x1si)/ksi;
+Cpsi=0.4606*1000;
+rhosi=7849;
+if(Bisi<0.1)
+ Msi=hsi/(Cpsi*rhosi*x1si);
+ Tinfsi=394.3;
+ T0si=699.9;
+ tsi=3600;
+ Tsi=((T0si-Tinfsi)*((2.718)^(-Msi*tsi)))+Tinfsi;//solving arhenius equation
+ mprintf(" the temp in si units %f deg K",Tsi)
+else
+ mprintf("some other method must be employed")
+end
+
+
diff --git a/2762/CH5/EX5.2.2/5_2_2.sce b/2762/CH5/EX5.2.2/5_2_2.sce new file mode 100755 index 000000000..290829f87 --- /dev/null +++ b/2762/CH5/EX5.2.2/5_2_2.sce @@ -0,0 +1,20 @@ +//Transport Processes and Seperation Process Principles
+//Chapter 5
+//Example 5.2-2
+//Principles of Unsteady State Heat Transfer
+//given data
+//si units
+//nomenclature similar to previous question
+r=25.4/1000;
+x1=r/3;
+h=11.36;
+k=43.3;;
+Cp=0.4606*1000;
+rho=7849;
+M=h/(Cp*rho*x1);
+V=(4/3)*(%pi)*(r^3);
+T0=699.9;
+Tinf=394.3;
+t=3600;//time
+Q=Cp*V*rho*(T0-Tinf)*(1-((%e)^(-M*t)));
+mprintf("heat removed= %f J",Q)
diff --git a/2762/CH5/EX5.3.3/5_3_3.sce b/2762/CH5/EX5.3.3/5_3_3.sce new file mode 100755 index 000000000..6cea7e14f --- /dev/null +++ b/2762/CH5/EX5.3.3/5_3_3.sce @@ -0,0 +1,23 @@ +//Transport Processes and Seperation Process Principles
+//Chapter 5
+//Example 5.3-3
+//Principles of Unsteady State Heat Transfer
+//given data
+//si units
+//nomenclature similar to previous questions;
+//center is at x=0
+x=0;
+x1=0.0681/2;//radius of can
+n=x/x1;
+k=0.830;
+h=4540;
+m=(k/(h*x1));
+alpha=2.007e-7;
+t=0.75*3600;
+X=(alpha*t)/(x1*x1);
+Y=0.13;//heislers figure or graph
+//Y=(T1-T)/(T1-T0)
+T1=115.6;
+T0=29.4;
+T=T1-(Y*(T1-T0));
+mprintf("temp at the center of the can= %f deg C",T)
diff --git a/2762/CH5/EX5.3.4/5_3_4.sce b/2762/CH5/EX5.3.4/5_3_4.sce new file mode 100755 index 000000000..f4ff8d831 --- /dev/null +++ b/2762/CH5/EX5.3.4/5_3_4.sce @@ -0,0 +1,31 @@ +//Transport Processes and Seperation Process Principles
+//Chapter 5
+//Example 5.3-4
+//Principles of Unsteady State Heat Transfer
+//given data
+//si units
+//nomenclature similar to previous questions
+//conduction in x dirn
+x1=0.03405;
+y1=0.1016/2;
+k=0.83;
+alpha=2.007e-7;
+t=0.75*3600;//time in s
+r=0.75*3600;//hours to mins
+x=0;
+n=x/x1;
+h=4540;
+m=k/(h*x1);
+X=(alpha*t)/(x1*x1);
+//conduction in y direction
+y=0;
+y1=0.0508;
+my=k/(h*y1);
+Y=(alpha*t)/(y1*y1);
+Yx=0.13;//taken from the figure
+Yy=0.8;
+Yxy=Yx*Yy;
+T1=115.6;
+T0=29.4;
+Txy=T1-(Yxy*(T1-T0));
+mprintf("temp at the centre of the can= %f deg C",Txy)
diff --git a/2762/CH5/EX5.5.1/5_5_1.sce b/2762/CH5/EX5.5.1/5_5_1.sce new file mode 100755 index 000000000..a3f81d89f --- /dev/null +++ b/2762/CH5/EX5.5.1/5_5_1.sce @@ -0,0 +1,24 @@ +//Transport Processes and Seperation Process Principles
+//Chapter 5
+//Example 5.5-1
+//Principles of Unsteady State Heat Transfer
+//given data
+//english units
+h=39.7;
+k=0.498;//thermal conductivity
+Cp=3.48*1000;//specific heat
+rho=1073;//density
+alpha=k/(rho*Cp)//temp coefficient
+w=0.203;
+x1=w/2;
+x=0;
+n=x/x1;
+m=k/(h*x1);
+T1=1.7+273.2;
+T0=37.8+273.2;
+T=10+273.2;
+Y=(T1-T)/(T1-T0);
+X=0.9;//from the given graph, X=(alpha*t)/(x1^2)
+t=(X*x1*x1)/(alpha);
+mprintf("the time taken is %f s = %f h",t,t/3600)
+//end
diff --git a/2762/CH5/EX5.5.2/5_5_2.sce b/2762/CH5/EX5.5.2/5_5_2.sce new file mode 100755 index 000000000..c7dd2d24a --- /dev/null +++ b/2762/CH5/EX5.5.2/5_5_2.sce @@ -0,0 +1,16 @@ +//Transport Processes and Seperation Process Principles
+//Chapter 5
+//Example 5.5-2
+//Principles of Unsteady State Heat Transfer
+//given data
+m=75/100;//percentage of moisture
+H=335*1000;//latent heat of fusion
+lemda=m*H;
+a=0.0635;//meat slab thickness
+Tf=270.4;
+T1=244.3;
+rho=1057;
+h=17;
+k=1.038;
+t=(lemda*rho/(Tf-T1))*((a/(2*h))+((a*a)/(8*k)));
+mprintf("the time taken is %f h",t/3600)
|