summaryrefslogtreecommitdiff
path: root/2762/CH4
diff options
context:
space:
mode:
Diffstat (limited to '2762/CH4')
-rwxr-xr-x2762/CH4/EX4.1.1/4_1_1.sce12
-rwxr-xr-x2762/CH4/EX4.2.1/4_2_1.sce25
-rwxr-xr-x2762/CH4/EX4.3.1/4_3_1.sce21
-rwxr-xr-x2762/CH4/EX4.3.2/4_3_2.sce25
-rwxr-xr-x2762/CH4/EX4.3.3/4_3_3.sce29
-rwxr-xr-x2762/CH4/EX4.3.4/4_3_4.sce16
-rwxr-xr-x2762/CH4/EX4.3.5/4_3_5.sce23
-rwxr-xr-x2762/CH4/EX4.4.1/4_4_1.sce14
-rwxr-xr-x2762/CH4/EX4.5.1/4_5_1.sce27
-rwxr-xr-x2762/CH4/EX4.5.2/4_5_2.sce38
-rwxr-xr-x2762/CH4/EX4.5.3/4_5_3.sce22
-rwxr-xr-x2762/CH4/EX4.6.1/4_6_1.sce24
-rwxr-xr-x2762/CH4/EX4.7.3/4_7_3.sce23
-rwxr-xr-x2762/CH4/EX4.8.2/4_8_2.sce32
14 files changed, 331 insertions, 0 deletions
diff --git a/2762/CH4/EX4.1.1/4_1_1.sce b/2762/CH4/EX4.1.1/4_1_1.sce
new file mode 100755
index 000000000..5e5178fa6
--- /dev/null
+++ b/2762/CH4/EX4.1.1/4_1_1.sce
@@ -0,0 +1,12 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 4
+//Example 4.1-1
+//Principles of Steady State Heat Transfer
+//si units
+//given data
+k=0.048;//thermal conductivity
+delx=0.0254;//thickness
+T1=352.7;//temp of one surface
+T2=297.1;
+qbya=(k/delx)*(T1-T2);//heAT lost per m2
+mprintf("heat loss per m2= %f W/m2",qbya)
diff --git a/2762/CH4/EX4.2.1/4_2_1.sce b/2762/CH4/EX4.2.1/4_2_1.sce
new file mode 100755
index 000000000..8c63f39ab
--- /dev/null
+++ b/2762/CH4/EX4.2.1/4_2_1.sce
@@ -0,0 +1,25 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 4
+//Example 4.2-1
+//Principles of Steady State Heat Transfer
+//given data
+//si units
+//nomenclature of unmentioned specifications similar to previous example
+k=0.151;
+T1=274.9;
+T2=297.1;
+r1=5/1000;
+r2=20/1000;
+L=1;
+A1=2*3.14*L*r1;//area of inner surface of cylinder
+A2=2*3.14*L*r2;
+Am=(A2-A1)/(log(A2/A1)/log(2.71828183));//log mean of inner surface area and outer surface area
+q=(k*Am*(T1-T2))/(r2-r1);//fouriers law
+if(q<0)
+ disp("HT is from r2 to r1")
+ else
+ disp("HT is from r1 to r2")
+end
+qd=-14.65;//amt of heat that needs to be dissipitated
+l=qd/q;//length reqd
+mprintf("length of tubing required= %f m",l)
diff --git a/2762/CH4/EX4.3.1/4_3_1.sce b/2762/CH4/EX4.3.1/4_3_1.sce
new file mode 100755
index 000000000..60eb7b7e9
--- /dev/null
+++ b/2762/CH4/EX4.3.1/4_3_1.sce
@@ -0,0 +1,21 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 4
+//Example 4.3-2
+//Principles of Steady State Heat Transfer
+//given data
+//si units
+//nomenclature of unmentioned specifications similar to previous example
+ka=0.151;//thermal conductivity
+kb=0.0433;
+kc=0.762;
+T1=255.4;//temperatures
+T4=297.1;
+dx1=0.0127;//thickness
+dx2=0.1016;
+dx3=0.0762;
+Ra=dx1/(ka);//per unit area calculation
+Rb=dx2/(kb);
+Rc=dx3/kc;
+q=(T1-T4)/(Ra+Rb);
+T2=T1-(q*Ra);
+mprintf("the intermediate wall temp is %f K",T2)
diff --git a/2762/CH4/EX4.3.2/4_3_2.sce b/2762/CH4/EX4.3.2/4_3_2.sce
new file mode 100755
index 000000000..897e92923
--- /dev/null
+++ b/2762/CH4/EX4.3.2/4_3_2.sce
@@ -0,0 +1,25 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 4
+//Example 4.3-2
+//Principles of Steady State Heat Transfer
+//given data
+//si units
+//nomenclature of unmentioned specifications similar to previous example
+ka=21.63;
+kb=0.2423;
+T1=811;
+T3=310.8;
+r1=0.0254/2;
+r2=0.0508/2;
+r3=0.0508;
+L=0.305;
+A1=2*3.14*L*r1;//area of inner surface of cylinder
+A2=2*3.14*L*r2;
+A3=2*3.14*L*r3;
+A1m=(A2-A1)/(log(A2/A1)/log(2.71828183));//log mean of inner surface area and outer surface area
+A2m=(A3-A2)/(log(A3/A2)/log(2.71828183))
+Ra=(r2-r1)/(ka*A1m);
+Rb=(r3-r2)/(kb*A2m);
+q=(T1-T3)/(Ra+Rb);
+T2=T1-(q*Ra);
+mprintf("the intermediate wall temp is %f K",T2)
diff --git a/2762/CH4/EX4.3.3/4_3_3.sce b/2762/CH4/EX4.3.3/4_3_3.sce
new file mode 100755
index 000000000..a812004a6
--- /dev/null
+++ b/2762/CH4/EX4.3.3/4_3_3.sce
@@ -0,0 +1,29 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 4
+//Example 4.3-3
+//Principles of Steady State Heat Transfer
+//given data
+//nomenclature of unmentioned specifications similar to previous example
+ri=0.412/12;//inside radius of the steel pipe in ft
+r1=0.525/12;//outside radius of the steel pipe in ft
+ro=2.025/12;//lagging radius of the steel pipe in ft
+L=1;//unit length of the pipe
+Ai=2*%pi*ri*L;//Area of the resp surfaces
+A1=2*%pi*r1*L;
+Ao=2*%pi*ro*L;
+Aa1lm=(A1-Ai)/log(A1/Ai);
+Ab1lm=(Ao-A1)/log(Ao/A1);
+ka=26;
+kb=0.037;
+hi=1000;
+Ri=1/(hi*Ai);
+Ra=(r1-ri)/(ka*Aa1lm);
+Rb=(ro-r1)/(kb*Ab1lm);
+ho=2;
+Ro=1/(ho*Ao);
+Ti=267;To=80;
+q=(Ti-To)/(Ri+Ra+Rb+Ro);
+Ui=1/(Ai*(Ri+Ra+Rb+Ro));
+mprintf("the overall HTC= %f btu/h ft2 deg F",Ui)
+Q=Ui*Ai*(Ti-To);
+mprintf(" the heat ejected = %f btu/h",Q)
diff --git a/2762/CH4/EX4.3.4/4_3_4.sce b/2762/CH4/EX4.3.4/4_3_4.sce
new file mode 100755
index 000000000..f7bb43685
--- /dev/null
+++ b/2762/CH4/EX4.3.4/4_3_4.sce
@@ -0,0 +1,16 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 4
+//Example 4.3-4
+//Principles of Steady State Heat Transfer
+//given data
+//nomenclature of unmentioned specifications similar to previous example
+I=200;//current in A
+R=0.126;// resistance in ohms
+P=I*I*R;//Power in watts
+Tw=422.1;//watt temp in K
+L=0.91;//length of wire
+r=0.001268;//radius of wire
+qdot=P/(%pi*L*r*r);
+k=22.5;
+T0=(qdot*r*r/(4*k))+Tw
+mprintf("centre temperature= %f K",T0)
diff --git a/2762/CH4/EX4.3.5/4_3_5.sce b/2762/CH4/EX4.3.5/4_3_5.sce
new file mode 100755
index 000000000..955c58904
--- /dev/null
+++ b/2762/CH4/EX4.3.5/4_3_5.sce
@@ -0,0 +1,23 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 4
+//Example 4.3-5
+//Principles of Steady State Heat Transfer
+//given data in si units
+//nomenclature of unmentioned specifications similar to previous example
+k=0.4;
+h0=20
+rcr=k/h0;//critical radius
+mprintf("critical radius= %f mm",rcr*1000)
+L=1;
+D2=1.5;//diameter in m
+r2=D2/(2*1000);//radius in si units
+A=2*%pi*r2*L;
+t2=400;//wire surface temp
+T0=300;//temp of air
+q=h0*A*(t2-T0);
+mprintf(" heat loss per m of length without insulation %f W",q)
+r1i=r2;//with insulation
+x=2.5;//thickness of insulation in mm
+r2i=r2+(x/1000);
+qi=(2*%pi*L*(t2-T0))/(((log(r2i/r1i))/k)+(1/(r2i*h0)))
+mprintf(" heat loss per m of length with insulation %f W",qi)
diff --git a/2762/CH4/EX4.4.1/4_4_1.sce b/2762/CH4/EX4.4.1/4_4_1.sce
new file mode 100755
index 000000000..777004505
--- /dev/null
+++ b/2762/CH4/EX4.4.1/4_4_1.sce
@@ -0,0 +1,14 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 4
+//Example 4.4-1
+//Principles of Steady State Heat Transfer
+//given data
+//si units
+N=4;
+M=9.25;
+L=5;
+k=0.9;
+T1=600;
+T2=400;
+q=4*((M/N)*k*L*(T1-T2));
+mprintf("heat transfer through the walls= %f W",q)
diff --git a/2762/CH4/EX4.5.1/4_5_1.sce b/2762/CH4/EX4.5.1/4_5_1.sce
new file mode 100755
index 000000000..b66ff96ac
--- /dev/null
+++ b/2762/CH4/EX4.5.1/4_5_1.sce
@@ -0,0 +1,27 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 4
+//Example 4.5-1
+//Principles of Steady State Heat Transfer
+//given data
+//si units
+//nomenclature of unmentioned specifications similar to previous example
+mub=2.6e-5;//viscosity of air
+Tw=488.7;//temp of water
+k=0.03894;
+Pr=0.686;//prandtl number
+muw=2.64e-5;//viscosity of water
+Mair=28.97;//mol wt of air
+P1=206.8;//inlet pressure of air
+Patm=101.33;//atmospheric pressure of air
+V=22.414;//mol vol of air
+T0=273.2;//STP temp
+T1=477.6;//temp of air
+rhoair=Mair*(1/V)*(P1/Patm)*(T0/T1);//density of air
+D=0.0254;//diameter of tube
+v=7.62;//vel of air
+Re=(D*v*rhoair)/mub;//reynolds number
+Nu=0.027*(Re^0.8)*(Pr^(1/3))*((mub/muw)^0.14);//nusselts number
+hl=Nu*k/D;//HT coeffiecient
+qbyA=hl*(Tw-T1);//flux
+mprintf("heat flux= %f W/m2",qbyA)
+mprintf(" HT coefficient= %f W/m2 K",hl)
diff --git a/2762/CH4/EX4.5.2/4_5_2.sce b/2762/CH4/EX4.5.2/4_5_2.sce
new file mode 100755
index 000000000..9cb80a11f
--- /dev/null
+++ b/2762/CH4/EX4.5.2/4_5_2.sce
@@ -0,0 +1,38 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 4
+//Example 4.5-2
+//Principles of Steady State Heat Transfer
+//given data in si units
+//nomenclature of unmentioned specifications similar to previous example
+Di=0.0266;
+Do=0.0334;
+Pr=2.72;//Prandtl Number
+L=0.305;
+rho=0.98*1000;//density of water
+k=0.633;
+mu=4.32e-4;
+Tw1=80;//assumed for the first trial temp in deg C
+muw1=3.56e-4;
+v=2.44;//vel in m/s
+Re1=Di*v*rho/mu;
+k=0.663;
+hl=(k*0.027*(Re1^0.8)*(Pr^(1/3))*((mu/muw1)^0.14))/Di;
+mprintf("i) the convective HTC= %f W/m2 K",hl)
+Ai=%pi*Di*L;
+Alm=%pi*((Do+Di)/2)*L;
+Ao=%pi*Do*L;
+ksteel=45;
+Ri=1/(hl*Ai);
+Rm=((Do-Di)/2)/(ksteel*Alm);
+ho=10500;
+Ro=(1/(Ao*ho));
+sumR=Ri+Rm+Ro;
+Tdiff=107.8-65.6;
+Tdrop=(Ri/sumR)*Tdiff;
+Ui=1/(Ai*sumR);
+mprintf(" ii) overall HTC= %f W/m2 K",Ui);
+q=Ui*Ai*(Tdiff);
+mprintf(" ii) heat transfer rate= %f W",q)
+mprintf(" the calculations performed in the above will vary from the example as fraction exponents have been used")
+//the calculations performed in the above will vary from the example as fraction exponents have been used)
+//the calculations performed in the above will vary from the example as fraction exponents have been used
diff --git a/2762/CH4/EX4.5.3/4_5_3.sce b/2762/CH4/EX4.5.3/4_5_3.sce
new file mode 100755
index 000000000..69d2367e5
--- /dev/null
+++ b/2762/CH4/EX4.5.3/4_5_3.sce
@@ -0,0 +1,22 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 4
+//Example 4.5-3
+//Principles of Steady State Heat Transfer
+//given data in si units
+//nomenclature of unmentioned specifications similar to previous example
+D=0.05;//diameter of the tube in m
+A=%pi*D*D/4;
+fr=4;//mass flow rate in kg/s
+G=fr/A;
+mu=7.1e-4;
+Re=(D*G)/mu;
+Cp=120;//Specific Heat in J/kg K
+k=13;
+Pr=(Cp*mu)/k
+hl=(k/D)*0.625*((Re*Pr)^0.4);
+dT=505-500;//when liq is heated from 500 to 505 K
+q=fr*Cp*dT;
+dTw=30;//temp diff b/w fluid and Tw
+Ad=q/(hl*dTw);
+L=Ad/(%pi*D);
+mprintf("the tube length= %f m",L)
diff --git a/2762/CH4/EX4.6.1/4_6_1.sce b/2762/CH4/EX4.6.1/4_6_1.sce
new file mode 100755
index 000000000..a37e6162f
--- /dev/null
+++ b/2762/CH4/EX4.6.1/4_6_1.sce
@@ -0,0 +1,24 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 4
+//Example 4.6-1
+//Principles of Steady State Heat Transfer
+//given data
+//si units
+Tw=82.2;//temp of the fin
+Tb=15.6;//temp of cooling air
+Tf=(Tw+Tb)/2;
+k=0.028;//thermal conductivity
+rho=1.097;//density of water
+mu=1.95e-5;//viscosity
+Pr=0.704;//Prandtl No
+L=0.051;//fin thickness
+v=12.2;
+Re=(L*v*rho)/mu;//reynolds number
+Nu=0.664*(Re^0.5)*(Pr^(1/3));
+h=Nu*k/L;
+mprintf("a) heat transfer coefficient= %f W/m2 K",h);
+//part b
+Reb=4*100000//reynolds number
+Nub=0.0366*(Re^0.8)*(Pr^(1/3));
+hb=Nub*(k/L);
+mprintf("b) heat transfer coefficient= %f W/m2 K",hb);
diff --git a/2762/CH4/EX4.7.3/4_7_3.sce b/2762/CH4/EX4.7.3/4_7_3.sce
new file mode 100755
index 000000000..35d374e9f
--- /dev/null
+++ b/2762/CH4/EX4.7.3/4_7_3.sce
@@ -0,0 +1,23 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 4
+//Example 4.7-3
+//Principles of Steady State Heat Transfer
+//given data
+//si units
+T1=394.3;
+T2=366.5;
+Tf=(T1+T2)/2;
+del=30/1000;
+rho=0.9295;
+mu=2.21e-5;
+k=0.03219;
+Pr=0.693;
+betaa=1/Tf;
+L=0.6;
+g=9.806;
+Gr=(del^3)*(rho^2)*g*betaa*(T1-T2)/(mu*mu)
+h=((k/del)*(0.20)*((Gr*Pr)^0.25))/((L/del)^(1/9));
+A=0.6*0.4;//area= length*breadth
+q=h*A*(T1-T2);
+mprintf("heat transfer rate= %f W",q)
+//calculation deviations may occur
diff --git a/2762/CH4/EX4.8.2/4_8_2.sce b/2762/CH4/EX4.8.2/4_8_2.sce
new file mode 100755
index 000000000..110821cfc
--- /dev/null
+++ b/2762/CH4/EX4.8.2/4_8_2.sce
@@ -0,0 +1,32 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 4
+//Example 4.8-2
+//Principles of Steady State Heat Transfer
+//given data
+//si units
+Tsat=89.44;
+Tw=87.8;
+Tf=(Tsat+Tw)/2;
+D=0.0254;
+hf=2657.8-374.6;//latent heat using steam tables
+rho1=60.3*16.018;//density of condensed steam
+rhov=0.391;//density of ateam at 10 psia
+mu1=3.24e-4;
+kt=0.675;
+L=0.305;
+Tsat=193;//in K
+delT=3.33;
+g=9.806;
+//assuming laminar film
+Nu=1.13*(((rho1^2)*g*hf*1000*(L^3)/(mu1*kt*(delT)))^(0.25));
+h=Nu*(kt/L);
+A=%pi*D*L;
+q=h*A*(Tsat-Tw);
+m=q/hf;
+kteng=0.390;//
+Leng=1;//in english units
+heng=Nu*(kteng/Leng);
+Deng=1/12;
+Aeng=%pi*Deng*Leng;
+mprintf("avg HT coefficient= %f W/m2 K in si units",h)
+mprintf("avg HT coefficient= %f btu/h ft2 F in english units",heng)