summaryrefslogtreecommitdiff
path: root/2762/CH10
diff options
context:
space:
mode:
Diffstat (limited to '2762/CH10')
-rwxr-xr-x2762/CH10/EX10.2.1/10_2_1.sce12
-rwxr-xr-x2762/CH10/EX10.3.1/10_3_1.sce22
-rwxr-xr-x2762/CH10/EX10.3.3/10_3_3.sce20
-rwxr-xr-x2762/CH10/EX10.4.2/10_4_2.sce26
4 files changed, 80 insertions, 0 deletions
diff --git a/2762/CH10/EX10.2.1/10_2_1.sce b/2762/CH10/EX10.2.1/10_2_1.sce
new file mode 100755
index 000000000..d50088d68
--- /dev/null
+++ b/2762/CH10/EX10.2.1/10_2_1.sce
@@ -0,0 +1,12 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 10
+//Example 10.2-1
+//Stage and continuous Gas-liquid Seperation Processes
+//given data
+pa=0.21;//atm
+H=4.38*10000;//henreys law constant
+xa=pa/H;
+mprintf("the amount of O2 dissolved is %f mol O2 in 1 mol water or",xa)
+xad=(xa/18)*100;
+mprintf(" %f per 100 parts",xad)
+
diff --git a/2762/CH10/EX10.3.1/10_3_1.sce b/2762/CH10/EX10.3.1/10_3_1.sce
new file mode 100755
index 000000000..d5fa7707e
--- /dev/null
+++ b/2762/CH10/EX10.3.1/10_3_1.sce
@@ -0,0 +1,22 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 10
+//Example 10.3-1
+//Stage and continuous Gas-liquid Seperation Processes
+//given data
+L0=300;//kg mol/h
+Ld=L0;
+V=100;//kg mol/h
+ya2=0.2;
+Vd=V*(1-ya2);
+//L0*(xa0/(1-xa0))+Vd*(ya2/(1-ya2))=Ld*(xa1/(1-xa1))+Vd*(ya1/(1-ya1))
+xa0=0;
+LHS=L0*(xa0/(1-xa0))+Vd*(ya2/(1-ya2));
+H=0.142*10000;//henrys law constant at 293 K (atm/mol frac)
+P=1;//atm
+Hd=H/P;
+xa1=1.41/10000
+ya1=Hd*xa1
+L1=Ld/(1-xa1);
+V1=Vd/(1-ya1);
+mprintf("the outlet liquid flow rate is %f kg/h",L1);
+mprintf("the outlet vapour flow rate is %f kg/h",V1);
diff --git a/2762/CH10/EX10.3.3/10_3_3.sce b/2762/CH10/EX10.3.3/10_3_3.sce
new file mode 100755
index 000000000..ceef2ac48
--- /dev/null
+++ b/2762/CH10/EX10.3.3/10_3_3.sce
@@ -0,0 +1,20 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 10
+//Example 10.3-3
+//Stage and continuous Gas-liquid Seperation Processes
+//given data
+V1=29.73;//kg mol/h
+ya1=0.00101;
+L0=90;
+xa0=0;
+m=2.53;
+A1=L0/(m*V1);//cross sectional area
+Vn1=30;
+yan1=0.01;
+Ln=90.27;
+xan=0.003;
+An=Ln/(m*Vn1);
+A=sqrt(A1*An);
+Np=log(((yan1-m*xa0)/(ya1-m*xa0))*(1-1/A)+(1/A))/log(A);//no. of plates
+mprintf("the no. of plates= %f",Np)
+//kremsor equations
diff --git a/2762/CH10/EX10.4.2/10_4_2.sce b/2762/CH10/EX10.4.2/10_4_2.sce
new file mode 100755
index 000000000..dd3551a3d
--- /dev/null
+++ b/2762/CH10/EX10.4.2/10_4_2.sce
@@ -0,0 +1,26 @@
+//Transport Processes and Seperation Process Principles
+//Chapter 10
+//Example 10.4-2
+//Stage and continuous Gas-liquid Seperation Processes
+//given data from the graph mentioned in the example
+yastar=0.052;
+xal=0.1;//bulk concn of A in liquid phase
+yag=0.38;//bulk concn of A in gas phase
+yai=0.197;//concn of A at interface
+xai=0.247;//yai=f(xai)
+kdy=1.465/1000;//gas phase mass transfer coefficient
+kdx=1.967/1000;//liq phase mass transfer coefficient
+md=(yai-yastar)/(xai-xal);//graphical correlation
+yaim=((1-yai)-(1-yag))/((log((1-yai)/(1-yag)))/log(2.71828183))+1;//graphical correlation
+xaim=((1-xal)-(1-xai))/((log((1-xal)/(1-xai)))/log(2.71828183))+1;//graphical correlation
+yam=((1-yastar)-(1-yag))/((log((1-yastar)/(1-yag)))/log(2.71828183))+1;//graphical correlation
+//(1/(Kdy(1-yam)))=(1/(kdy/(1-yaim)))+(md/(kdx/(1-xaim)))
+A=(1/(kdy/(1-yaim)));
+B=(md/(kdx/(1-xaim)));
+Kdy=((A+B)^(-1))*(1-yam);
+R=(A/(A+B))*100;//
+Na=(Kdy/(1-yam))*(yastar-yag);
+mprintf("overall mass transfer coefficient= %f kg mol/s m2",Kdy)
+mprintf(" percentage resistace in gas film= %f percent",R)
+mprintf(" percentage resistace in liquid film= %f percent",(100-R))
+mprintf(" Flux= %f kg mol/s m2",Na)