diff options
Diffstat (limited to '2744/CH10/EX10.10/Ex10_10.sce')
-rwxr-xr-x | 2744/CH10/EX10.10/Ex10_10.sce | 27 |
1 files changed, 27 insertions, 0 deletions
diff --git a/2744/CH10/EX10.10/Ex10_10.sce b/2744/CH10/EX10.10/Ex10_10.sce new file mode 100755 index 000000000..6ca3835e1 --- /dev/null +++ b/2744/CH10/EX10.10/Ex10_10.sce @@ -0,0 +1,27 @@ +clear;
+clc;
+d = 9;// inches
+p = 5000/2240;// lb/in^2
+f = 8;// tons/in^2
+PR = 0.3;// Poisson's ratio
+//(i) Maximum principal stress hypothesis:
+k_limit1 = sqrt((f + p)/(f - p));//k_limit = r1/r2
+r_limit1 = k_limit1*0.5*d;//inches
+printf('The outer radius in case(i), r2 = %.3f inches',r_limit1);
+//(ii) Maximum principal strain:
+k_limit2 = sqrt(((f/p - PR)+1)/(f/p - PR -1));
+r_limit2 = k_limit2*0.5*d;// inches
+printf('\n The outer radius in case(ii), r2 = %.3f inches',r_limit2);
+//(iii) Maximum shear stress:
+k_limit3 = sqrt(f/(2*p) /((f/(2*p)) - 1));
+r_limit3 = k_limit3*0.5*d;// inches
+printf('\n The outer radius in case(iii), r2 = %.3f inches',r_limit3);
+//(iv) Maximum strain energy
+K1 = (f^2 /p^2)/(2*((f^2 /(2*p^2)) - (1+PR)));
+K2 = K1^2;
+K3 = ((f^2 /(2*p^2)) - (1-PR))/((f^2 /(2*p^2)) - (1+PR));
+k_limit4 = sqrt(K1+sqrt(K2-K3));
+r_limit4 = k_limit4*0.5*d;// inches
+printf('\n The outer radius in case(iv), r2 = %.3f inches',r_limit4);
+
+//there are calculation errors in the answer given in text book
|