diff options
Diffstat (limited to '2705/CH5/EX5.19')
-rwxr-xr-x | 2705/CH5/EX5.19/Ex5_19.sce | 39 |
1 files changed, 39 insertions, 0 deletions
diff --git a/2705/CH5/EX5.19/Ex5_19.sce b/2705/CH5/EX5.19/Ex5_19.sce new file mode 100755 index 000000000..830fd787f --- /dev/null +++ b/2705/CH5/EX5.19/Ex5_19.sce @@ -0,0 +1,39 @@ +clear;
+clc;
+disp('Example 5.19')
+
+// aim : To determine the
+// (a) Gamma,
+// (b) del_U
+
+// Given Values
+P1 = 1400;// [kN/m^2]
+P2 = 100;// [kN/m^2]
+P3 = 220;// [kN/m^2]
+T1 = 273+360;// [K]
+m = .23;// [kg]
+cp = 1.005;// [kJ/kg*K]
+
+// Solution
+T3 = T1;// since process 1-3 is isothermal
+
+// (a)
+// for process 1-3, P1*V1=P3*V3,so
+V3_by_V1 = P1/P3;
+// also process 1-2 is adiabatic,so P1*V1^(Gamma)=P2*V2^(Gamma),hence
+// and process process 2-3 is iso-choric so,V3=V2 and
+V2_by_V1 = V3_by_V1;
+// hence,
+Gamma = log(P1/P2)/log(P1/P3); // heat capacity ratio
+
+mprintf('\n (a) The value of adiabatic index Gamma is = %f\n',Gamma);
+
+// (b)
+cv = cp/Gamma;// [kJ/kg K]
+// for process 2-3,P3/T3=P2/T2,so
+T2 = P2*T3/P3;// [K]
+
+// now
+del_U = m*cv*(T2-T1);// [kJ]
+mprintf('\n (b) The change in internal energy during the adiabatic expansion is U2-U1 = %f kJ (This is loss of internal energy)\n',del_U);
+// End
|