summaryrefslogtreecommitdiff
path: root/2705/CH15/EX15.8/Ex15_8.sce
diff options
context:
space:
mode:
Diffstat (limited to '2705/CH15/EX15.8/Ex15_8.sce')
-rwxr-xr-x2705/CH15/EX15.8/Ex15_8.sce65
1 files changed, 65 insertions, 0 deletions
diff --git a/2705/CH15/EX15.8/Ex15_8.sce b/2705/CH15/EX15.8/Ex15_8.sce
new file mode 100755
index 000000000..a37208dcc
--- /dev/null
+++ b/2705/CH15/EX15.8/Ex15_8.sce
@@ -0,0 +1,65 @@
+clear;
+clc;
+disp('Example 15.8');
+
+// aim : To determine
+// (a) the pressure, volume and temperature at cycle state points
+// (b) the thermal efficiency
+// (c) the theoretical output
+// (d) the mean effective pressure
+// (e) the carnot efficiency
+
+// given values
+rv = 9;// volume ratio
+P1 = 101;// initial pressure , [kN/m^2]
+V1 = .003;// initial volume, [m^3]
+T1 = 273+18;// initial temperature, [K]
+P3 = 4500;// maximum pressure, [kN/m^2]
+N = 3000;
+cp = 1.006;// specific heat capacity at constant pressure, [kJ/kg K]
+cv = .716;// specific heat capacity at constant volume, [kJ/kg K]
+
+// solution
+// taking reference Fig. 15.20
+// (a)
+// for process 1-2
+Gama = cp/cv;// heat capacity ratio
+R = cp-cv;// gas constant, [kJ/kg K]
+V2 = V1/rv;// volume at stage2, [m^3]
+// using PV^(Gama)=constant for process 1-2
+P2 = P1*(V1/V2)^(Gama);// pressure at stage2,. [kN/m^2]
+T2 = T1*(V1/V2)^(Gama-1);// [K]
+
+// for process 2-3
+V3 = V2;// volume at stage 3, [m^3]
+// since volume is constant in process 2-3 , so using P/T=constant, so
+T3 = T2*(P3/P2);// temperature at stage 3, [K]
+
+// for process 3-4
+V4 = V1;// volume at stage 4
+// using PV^(Gama)=constant for process 3-4
+P4 = P3*(V3/V4)^(Gama);// pressure at stage2,. [kN/m^2]
+T4 = T3*(V3/V4)^(Gama-1);// temperature at stage 4,[K]
+
+mprintf('\n (a) P1 = %f kN/m^2, V1 = %f m^3, t1 = %f C,\n P2 = %f kN/m^2, V2 = %f m^3, t2 = %f C,\n P3 = %f kN/m^2, V3 = %f m^3, t3 = %f C,\n P4 = %f kN/m^2, V4 = %f m^3, t4 = %f C\n',P1,V1,T1-273,P2,V2,T2-273,P3,V3,T3-273,P4,V4,T4-273);
+
+// (b)
+TE = 1-(T4-T1)/(T3-T2);// thermal efficiency
+mprintf('\n (b) The thermal efficiency is = %f percent\n',TE*100);
+
+// (c)
+m = P1*V1/(R*T1);// mass os gas, [kg]
+W = m*cv*((T3-T2)-(T4-T1));// work done, [kJ]
+Wt = W*N/60;// workdone per minute, [kW]
+mprintf('\n (c) The theoretical output is = %f kW\n',Wt);
+
+// (d)
+Pm = W/(V1-V2);// mean effective pressure, [kN/m^2]
+mprintf('\n (g) The mean effefctive pressure is = %f kN/m^2\n',Pm);
+
+// (e)
+CE = (T3-T1)/T3;// carnot efficiency
+mprintf('\n (e) The carnot efficiency is = %f percent\n',CE*100);
+
+
+// End