summaryrefslogtreecommitdiff
path: root/2705/CH15/EX15.13/Ex15_13.sce
diff options
context:
space:
mode:
Diffstat (limited to '2705/CH15/EX15.13/Ex15_13.sce')
-rwxr-xr-x2705/CH15/EX15.13/Ex15_13.sce79
1 files changed, 79 insertions, 0 deletions
diff --git a/2705/CH15/EX15.13/Ex15_13.sce b/2705/CH15/EX15.13/Ex15_13.sce
new file mode 100755
index 000000000..50608fe00
--- /dev/null
+++ b/2705/CH15/EX15.13/Ex15_13.sce
@@ -0,0 +1,79 @@
+clear;
+clc;
+disp('Example 15.13');
+
+// aim : To determine
+// (a) the pressure, volume and temperature at cycle process change points
+// (b) the net work done
+// (c) the thermal efficiency
+// (d) the heat received
+// (e) the work ratio
+// (f) the mean effective pressure
+// (g) the carnot efficiency
+
+
+// given values
+rv = 15;// volume ratio
+P1 = 97*10^-3;// initial pressure , [MN/m^2]
+V1 = .084;// initial volume, [m^3]
+T1 = 273+28;// initial temperature, [K]
+T4 = 273+1320;// maximum temperature, [K]
+P3 = 6.2;// maximum pressure, [MN/m^2]
+cp = 1.005;// specific heat capacity at constant pressure, [kJ/kg K]
+cv = .717;// specific heat capacity at constant volume, [kJ/kg K]
+
+// solution
+// taking reference Fig. 15.27
+// (a)
+R = cp-cv;// gas constant, [kJ/kg K]
+Gama = cp/cv;// heat capacity ratio
+// for process 1-2
+V2 = V1/rv;// volume at stage2, [m^3]
+// using PV^(Gama)=constant for process 1-2
+P2 = P1*(V1/V2)^(Gama);// pressure at stage2,. [MN/m^2]
+T2 = T1*(V1/V2)^(Gama-1);// temperature at stage 2, [K]
+
+// for process 2-3
+// since volumee is constant in process 2-3 , so using P/T=constant, so
+T3 = T2*(P3/P2);// volume at stage 3, [K]
+V3 = V2;// volume at stage 3, [MN/m^2]
+
+// for process 3-4
+P4 = P3;// pressure at stage 4, [m^3]
+// since in stage 3-4 P is constant, so V/T=constant,
+V4 = V3*(T4/T3);// temperature at stage 4,[K]
+
+// for process 4-5
+V5 = V1;// volume at stage 5, [m^3]
+P5 = P4*(V4/V5)^(Gama);// pressure at stage5,. [MN/m^2]
+T5 = T4*(V4/V5)^(Gama-1);// temperature at stage 5, [K]
+
+mprintf('\n (a) P1 = %f kN/m^2, V1 = %f m^3, t1 = %f C,\n P2 = %f MN/m^2, V2 = %f m^3, t2 = %f C,\n P3 = %f MN/m^2, V3 = %f m^3, t3 = %f C,\n P4 = %f MN/m^2, V4 = %f m^3, t4 = %f C,\n P5 = %fkN/m^2, V5 = %fm^3, t5 = %fC\n',P1*10^3,V1,T1-273,P2,V2,T2-273,P3,V3,T3-273,P4,V4,T4-273,P5*10^3,V5,T5-273);
+
+
+// (b)
+W = (P3*(V4-V3)+((P4*V4-P5*V5)-(P2*V2-P1*V1))/(Gama-1))*10^3;// work done, [kJ]
+mprintf('\n (b) The net work done is = %f kJ\n',W);
+
+// (c)
+TE = 1-(T5-T1)/((T3-T2)+Gama*(T4-T3));// thermal efficiency
+mprintf('\n (c) The thermal efficiency is = %f percent\n',TE*100);
+
+// (d)
+Q = W/TE;// heat received, [kJ]
+mprintf('\n (d) The heat received is = %f kJ\n',Q);
+
+// (e)
+PW = P3*(V4-V3)+(P4*V4-P5*V5)/(Gama-1)
+WR = W*10^-3/PW;// work ratio
+mprintf('\n (f) The work ratio is = %f\n',WR);
+
+// (e)
+Pm = W/(V1-V2);// mean effective pressure, [kN/m^2]
+mprintf('\n (e) The mean effective pressure is = %f kN/m^2\n',Pm);
+
+// (f)
+CE = (T4-T1)/T4;// carnot efficiency
+mprintf('\n (f) The carnot efficiency is = %f percent\n',CE*100);
+
+// End