summaryrefslogtreecommitdiff
path: root/2642/CH2
diff options
context:
space:
mode:
Diffstat (limited to '2642/CH2')
-rwxr-xr-x2642/CH2/EX2.1/Ex2_1.sce25
-rwxr-xr-x2642/CH2/EX2.10/Ex2_10.sce31
-rwxr-xr-x2642/CH2/EX2.11/Ex2_11.sce21
-rwxr-xr-x2642/CH2/EX2.12/Ex2_12.sce24
-rwxr-xr-x2642/CH2/EX2.13/Ex2_13.sce23
-rwxr-xr-x2642/CH2/EX2.2/Ex2_2.sce31
-rwxr-xr-x2642/CH2/EX2.3/Ex2_3.sce30
-rwxr-xr-x2642/CH2/EX2.4/Ex2_4.sce25
-rwxr-xr-x2642/CH2/EX2.5/Ex2_5.sce24
-rwxr-xr-x2642/CH2/EX2.6/Ex2_6.sce30
-rwxr-xr-x2642/CH2/EX2.7/Ex2_7.sce31
-rwxr-xr-x2642/CH2/EX2.8/Ex2_8.sce38
-rwxr-xr-x2642/CH2/EX2.9/Ex2_9.sce31
-rwxr-xr-x2642/CH2/EX9.2/Ex9_2.sce26
14 files changed, 390 insertions, 0 deletions
diff --git a/2642/CH2/EX2.1/Ex2_1.sce b/2642/CH2/EX2.1/Ex2_1.sce
new file mode 100755
index 000000000..92c8673af
--- /dev/null
+++ b/2642/CH2/EX2.1/Ex2_1.sce
@@ -0,0 +1,25 @@
+// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 2 : BESICS OF MAGNETIC CIRCUITS
+// Example : 2.1
+
+clc;clear; // clears the console and command history
+
+// Given data
+l = 4 // lenght in m
+w = 2 // width in m
+B = 0.12 // magnetis flux density in tesla
+
+// caclulations
+A = l*w // area in m^2
+flux = B*A // magnetic flux in Wb
+
+
+// display the result
+disp("Example 2.1 solution");
+printf(" \n Magnetic flux \n flux = %.2f Wb \n", flux);
+
+
diff --git a/2642/CH2/EX2.10/Ex2_10.sce b/2642/CH2/EX2.10/Ex2_10.sce
new file mode 100755
index 000000000..d14afb2ba
--- /dev/null
+++ b/2642/CH2/EX2.10/Ex2_10.sce
@@ -0,0 +1,31 @@
+// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 2 : BESICS OF MAGNETIC CIRCUITS
+// Example : 2.10
+clc;clear; // clears the console and command history
+
+// Given data
+A = 2*10^-4 // cross sectional area in m^2
+N = 200 // number of turns
+flux = 1.5*10^-3 // flux in Wb
+myu_r = 4000 // relative permiability of core
+l_1 = 0.01 // length in m
+a = 9 // length in cm
+w = 3 // width in cm
+
+// caclulations
+myu = myu_r*4*%pi*10^-7 // permiability
+l_2 = (4*(a-w-w+(1.5+1.5))-1) // mean length in cm
+R_mg = l_1/(4*%pi*10^-7*A) // reluctance of iron for air gap At/Wb
+R_mi = l_2*10^-2/(myu*A) // reluctance of iron for air gapAt/Wb
+R_mt = R_mg+R_mi // total relectance in At/Wb
+I = R_mt*flux/N // current in A
+
+// display the result
+disp("Example 2.10 solution");
+printf(" \n Current flowing through the coil \n I = %.0f A \n", I);
+
+// NOTE : In question they given flux=2.5mWb but in solution they took flux=1.5mWb
diff --git a/2642/CH2/EX2.11/Ex2_11.sce b/2642/CH2/EX2.11/Ex2_11.sce
new file mode 100755
index 000000000..51e103ac0
--- /dev/null
+++ b/2642/CH2/EX2.11/Ex2_11.sce
@@ -0,0 +1,21 @@
+// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 2 : BESICS OF MAGNETIC CIRCUITS
+// Example : 2.11
+clc;clear; // clears the console and command history
+
+// Given data
+I = 150 // current through conductor in A
+l = 2 // conductor length in m
+B = 0.35 // magnetic flux density in T
+
+// caclulations
+F = B*l*I // force in N
+
+// display the result
+disp("Example 2.11 solution");
+printf("\n Force \n F = %.0f N \n", F);
+
diff --git a/2642/CH2/EX2.12/Ex2_12.sce b/2642/CH2/EX2.12/Ex2_12.sce
new file mode 100755
index 000000000..c7e19a120
--- /dev/null
+++ b/2642/CH2/EX2.12/Ex2_12.sce
@@ -0,0 +1,24 @@
+// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 2 : BESICS OF MAGNETIC CIRCUITS
+// Example : 2.12
+clc;clear; // clears the console and command history
+
+// Given data
+l = 25*10^-2 // length of air-core coil in m
+A = 4*10^-4 // cross sectional area in m^2
+N = 65 // number of turns
+myu_0 = 4*%pi*10^-7
+myu_r = 1
+
+// caclulations
+myu = myu_0*myu_r
+L = N^2*myu*A/l // inductance in H
+
+// display the result
+disp("Example 2.12 solution");
+printf(" \n Inductance of the coil \n L = %.1e H \n", L);
+
diff --git a/2642/CH2/EX2.13/Ex2_13.sce b/2642/CH2/EX2.13/Ex2_13.sce
new file mode 100755
index 000000000..ee597f493
--- /dev/null
+++ b/2642/CH2/EX2.13/Ex2_13.sce
@@ -0,0 +1,23 @@
+// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 2 : BESICS OF MAGNETIC CIRCUITS
+// Example : 2.13
+clc;clear; // clears the console and command history
+
+// Given data
+k_h = 110 // hysteresis co-efficient in J/m^3
+V_cvol = 0.005 // volume of the core in m^3
+B_m = 1.12 // flux density in T
+f = 60 // frequency in Hz
+n = 1.6
+
+// caclulations
+P_h = k_h*V_cvol*B_m^n*f // hysteresis loss in W
+
+// display the result
+disp("Example 2.13 solution");
+printf(" \n Hysteresis loss \n P_h = %.2f W \n", P_h);
+
diff --git a/2642/CH2/EX2.2/Ex2_2.sce b/2642/CH2/EX2.2/Ex2_2.sce
new file mode 100755
index 000000000..01dba0a73
--- /dev/null
+++ b/2642/CH2/EX2.2/Ex2_2.sce
@@ -0,0 +1,31 @@
+// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 2 : BESICS OF MAGNETIC CIRCUITS
+// Example : 2.2
+
+clc;clear; // clears the console and command history
+
+// Given data
+d_in = 3 // inside diameter of iron toroid in cm
+d_out = 6 // outside diameter of iron toroid in cm
+N =200 // number of turns
+I = 3 // current in A
+flux = 0.015 // flux in Wb
+
+// caclulations
+d = d_in+((d_out-d_in)/2) // distance in cm
+l = %pi*d // mean length in cm
+A = %pi*d^2/4 // area in cm^2
+B =flux/(A*10^-4) // flux density in mWb/m^2
+MMF = N*I // magnetomotive force in At
+H = (N*I)/(l*10^-2) // magnetic field intensity in At/m
+
+// display the result
+disp("Example 2.2 solution");
+printf("\n Flux density \n B= %.6f mWb/m^2 \n", B);
+printf(" \n Magnetomotive force \n MMF= %.2f At \n", MMF);
+printf(" \n Magnetic field intensity \n H= %.2f At/m \n", H);
+printf(" NOTE:correction in solution they took d=1.5 insted of 4.5")
diff --git a/2642/CH2/EX2.3/Ex2_3.sce b/2642/CH2/EX2.3/Ex2_3.sce
new file mode 100755
index 000000000..26fd44419
--- /dev/null
+++ b/2642/CH2/EX2.3/Ex2_3.sce
@@ -0,0 +1,30 @@
+// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 2 : BESICS OF MAGNETIC CIRCUITS
+// Example : 2.3
+
+clc;clear; // clears the console and command history
+
+// Given data
+myu_r = 625 // relative permiability of rectangular core
+N = 25 // number of turns
+I = 2 // current in A
+a = 5.5 // lenght of rectangular box in cm
+b = 1.5 // width of rectangular box in cm
+
+// caclulations
+l = 2*(a+b) // mean length of core in cm
+H = N*I/(l*10^-2) // magnetic field intensity in At/m
+myu = 4*%pi*10^-7*myu_r // permeabilty
+B = myu*H // magnetic flux density in Wb/m^2;
+
+// display the result
+disp("Example 2.3 solution");
+printf(" \n Magnetic field intensity \n H= %.0f At/m \n", H);
+printf(" \n Permeabilty \n myu= %.2e \n", myu);
+printf(" \n Magnetic flux density \n B= %.2f Wb/m^2 \n", B);
+
+
diff --git a/2642/CH2/EX2.4/Ex2_4.sce b/2642/CH2/EX2.4/Ex2_4.sce
new file mode 100755
index 000000000..14c766b82
--- /dev/null
+++ b/2642/CH2/EX2.4/Ex2_4.sce
@@ -0,0 +1,25 @@
+// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 2 : BESICS OF MAGNETIC CIRCUITS
+// Example : 2.4
+
+clc;clear; // clears the console and command history
+
+// Given data
+N = 6 // number of turns
+I =3 // current in A
+flux = 0.056 // flux in Wb
+
+// caclulations
+MMF = N*I // magnetomotive force in At
+R_m = MMF/flux // reluctance in At/Wb
+
+// display the result
+disp("Example 2.4 solution");
+printf(" \n Magnetomotive force \n MMF= %.0f At \n", MMF);
+printf( "\n Reluctance \n R_m= %.1f At/Wb \n", R_m);
+
+
diff --git a/2642/CH2/EX2.5/Ex2_5.sce b/2642/CH2/EX2.5/Ex2_5.sce
new file mode 100755
index 000000000..61e100188
--- /dev/null
+++ b/2642/CH2/EX2.5/Ex2_5.sce
@@ -0,0 +1,24 @@
+// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 2 : BESICS OF MAGNETIC CIRCUITS
+// Example : 2.5
+clc;clear; // clears the console and command history
+
+// Given data
+I = 15 // current through conductor in A
+N = 10 // number of turns
+myu_0 = 4*%pi*10^-7 // permiability
+myu_r = 1 // relative permiability of air
+r = 0.015
+
+// caclulations
+B = myu_0*myu_r*N*I/(2*%pi*r) // magnetic flux in T
+
+// display the result
+disp("Example 2.5 solution");
+printf(" \n Magnetic flux \n B= %.0e T \n", B);
+
+
diff --git a/2642/CH2/EX2.6/Ex2_6.sce b/2642/CH2/EX2.6/Ex2_6.sce
new file mode 100755
index 000000000..510375511
--- /dev/null
+++ b/2642/CH2/EX2.6/Ex2_6.sce
@@ -0,0 +1,30 @@
+// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 2 : BESICS OF MAGNETIC CIRCUITS
+// Example : 2.6
+
+clc;clear; // clears the console and command history
+
+// Given data
+N = 200 // number of turns
+d_in = 7 // inner diameter of wooden toroidal coil in cm
+d_out = 10 // outer diameter of wooden toroidal coil in cm
+A = 0.005 // cross sectional area m^2
+I = 5 // current through coil in A
+R = d_out-d_in
+myu_0 = 4*%pi*10^-7
+
+// caclulations
+l = 2*%pi*R*10^-2 // mean circumference length in m
+H = N*I/l // magnetic field intensity in At/m
+B = myu_0*H // flux density in Wb/m^2
+flux = B*A // flux in Wb
+
+// display the result
+disp("Example 2.6 solution");
+printf(" \n Magnetic field intensity \n H= %.0f At/m \n", H);
+printf(" \n Flux density \n B= %.2e Wb/m^2 \n", B);
+printf(" \n Flux \n flux= %.1e Wb \n", flux);
diff --git a/2642/CH2/EX2.7/Ex2_7.sce b/2642/CH2/EX2.7/Ex2_7.sce
new file mode 100755
index 000000000..1f307ee5c
--- /dev/null
+++ b/2642/CH2/EX2.7/Ex2_7.sce
@@ -0,0 +1,31 @@
+// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 2 : BESICS OF MAGNETIC CIRCUITS
+// Example : 2.7
+clc;clear; // clears the console and command history
+
+// Given data
+l = 0.1 // length in m
+w = 0.01 // width in m
+h =0.1 // height in m
+N = 450 // number of turns
+I = 0.2 // current in A
+myu_r = 850 // relative permiability magnetic material
+
+// caclulations
+MMF = N*I // magnetomotive force in At
+l_c = (h-w)*4 // mean length of the path in m
+A = w*w // cross sectional area in m^2
+R_m = l_c/(4*%pi*10^-7*myu_r*A) // relectance in At/Wb
+flux = MMF/R_m // flux in Wb
+B = flux/A // magnetic flux density in Wb/m^2
+H = B/(4*%pi*10^-7*myu_r) // field intensity in At/m
+
+// display the result
+disp("Example 2.7 solution");
+printf(" \n Flux \n flux= %.2e Wb \n", flux);
+printf(" \n Magnetic flux density \n B= %.4f Wb/m^2 \n", B);
+printf(" \n Field intensity \n H= %.2f At/m \n", H);
diff --git a/2642/CH2/EX2.8/Ex2_8.sce b/2642/CH2/EX2.8/Ex2_8.sce
new file mode 100755
index 000000000..bb52067bf
--- /dev/null
+++ b/2642/CH2/EX2.8/Ex2_8.sce
@@ -0,0 +1,38 @@
+// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 2 : BESICS OF MAGNETIC CIRCUITS
+// Example : 2.8
+
+clc;clear; // clears the console and command history
+
+// Given data
+N = 450 // number of turns wound on left side of limb
+A = 4 // cross sectional area in m^2
+I = 5 // current through coil in A
+fulx = 3 // flux in right limb Wb
+myu_r = 500 // relative permiability magnetic material
+l_1 = 0.12
+l_2 = 0.24
+phi2 = 3
+
+// caclulations
+// we have relation
+// phi1*rm1 = phi2*rm2
+// phi1*l_1/uA = pi2*l_2/uA
+phi1 = phi2*l_2/l_1 // flux on left side in Wb
+flux = phi1+phi2 // total flux in Wb
+B_1 = flux/A // flux density in the left limb
+H_1 = B_1/(4*%pi*10^-7*myu_r) // magnetic flux in At/m
+MMF_1 = H_1*l_2 // magnetomotive force in At
+B_2 = phi2/A // flux density in the right limb
+H_2 = B_2/(4*%pi*10^-7*myu_r) // magnetic flux in At/m
+MMF_2 = H_2*l_2 // magnetomotive force in At
+MMF_t = MMF_1+MMF_2 // total magnetomotive force in At
+I = MMF_t/N // current in A
+
+// display the result
+disp("Example 2.8 solution");
+printf(" \n Current\n I= %.2f A \n", I);
diff --git a/2642/CH2/EX2.9/Ex2_9.sce b/2642/CH2/EX2.9/Ex2_9.sce
new file mode 100755
index 000000000..2b5237828
--- /dev/null
+++ b/2642/CH2/EX2.9/Ex2_9.sce
@@ -0,0 +1,31 @@
+ // FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 2 : BESICS OF MAGNETIC CIRCUITS
+// Example : 2.9
+clc;clear; // clears the console and command history
+
+// Given data
+l = 0.45 // mean lenght in m
+A = 25*10^-4 // cross sectional area in m^2
+l_ag = 0.8*10^-3 // air gap in m
+N = 500 // number of turns
+I = 1.25 // current in A
+fulx = 2.25*10^-3 // flux in Wb
+phi = 1.5*10^-3 // flux in Wb
+
+// caclulations
+B = phi/A // magnetic flux density in Wb/m^2
+MMF = N*I // magnetomotive force in At
+H = B/(4*%pi*10^-7) // magnetomotizing force in At/m
+MMF_ag = H*l_ag // magnetomotive force in At
+MMF_i = MMF-MMF_ag // magnetomotive force for iron ring in At
+H_i = MMF_i/l // magnetic field intensity for iron part in At/m
+myu_r = B/((4*%pi*10^-7)*H_i) // relative permiability for iron
+
+// display the result
+disp("Example 2.9 solution");
+printf(" \n Relative permiability for iron \n myu_r = %.2f \n", myu_r);
+printf(" given current value in question is 2.25A, but in solution they took value of current as 1.25A ");
diff --git a/2642/CH2/EX9.2/Ex9_2.sce b/2642/CH2/EX9.2/Ex9_2.sce
new file mode 100755
index 000000000..8746869ab
--- /dev/null
+++ b/2642/CH2/EX9.2/Ex9_2.sce
@@ -0,0 +1,26 @@
+// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 9 : SYNCHRONOUS GENERATOR
+// Example : 9.2
+
+clc;clear; // clears the console and command history
+
+// Given data
+P = 8 // number of poles
+m = 3 // number of phase
+S = 144 // number of slots
+
+// caclulations
+T_p = S/P // pole pitch interms of slots
+slots_1 = 180/T_p // pole pitch per slots
+y = 2*slots_1 // short pitch angle in degree
+k_p = cosd(y/2) // pitch factor
+
+// display the result
+disp("Example 9.2 solution");
+printf(" \n Pitch factor is \n k_p = %.2f \n", k_p );
+
+