diff options
Diffstat (limited to '2642/CH10')
-rwxr-xr-x | 2642/CH10/EX10.1/Ex10_1.sce | 30 | ||||
-rwxr-xr-x | 2642/CH10/EX10.2/Ex10_2.sce | 33 | ||||
-rwxr-xr-x | 2642/CH10/EX10.3/Ex10_3.sce | 32 | ||||
-rwxr-xr-x | 2642/CH10/EX10.4/Ex10_4.sce | 26 |
4 files changed, 121 insertions, 0 deletions
diff --git a/2642/CH10/EX10.1/Ex10_1.sce b/2642/CH10/EX10.1/Ex10_1.sce new file mode 100755 index 000000000..f10336aec --- /dev/null +++ b/2642/CH10/EX10.1/Ex10_1.sce @@ -0,0 +1,30 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 10 : SYNCHRONOUS MOTOR
+// Example : 10.1
+
+clc;clear; // clears the console and command history
+
+// Given data
+V = 2.5*10^3 // supply voltage in V
+R_r = 0.12 // per phase resistance in ohm
+X_r = 3.2 // syncronous reactance in ohm
+I_a = 185 // line current in A
+pf = 0.8 // leading power factor
+
+// caclulations
+phi = acosd(pf)
+V_t = V/sqrt(3) // terminal voltage per phase in V
+Z_s = R_r+%i*X_r // impedance per phase ohm
+beta = atand(X_r/R_r)
+E_r = I_a*Z_s // resultant voltage due to impedance in V
+E_f = sqrt(V_t^2+abs(E_r)^2-2*V_t*abs(E_r)*cosd(beta+phi)) // excitation voltage per phase in V
+
+
+// display the result
+disp("Example 10.1 solution");
+printf(" \n Excitation voltage per phase \n E_f = %.2f V \n", E_f );
+
diff --git a/2642/CH10/EX10.2/Ex10_2.sce b/2642/CH10/EX10.2/Ex10_2.sce new file mode 100755 index 000000000..e9344ff4f --- /dev/null +++ b/2642/CH10/EX10.2/Ex10_2.sce @@ -0,0 +1,33 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 10 : SYNCHRONOUS MOTOR
+// Example : 10.2
+
+clc;clear; // clears the console and command history
+
+// Given data
+kVA = 1200 // kVA ratings
+V = 14*10^3 // supply voltage in V
+R_r = 4.8 // per phase resistance in ohm
+X_r = 35 // syncronous reactance in ohm
+pf = 0.95 // leading power factor
+
+// caclulations
+phi = acosd(pf)
+Z_s = R_r+%i*X_r // impedance per phase ohm
+I_a = kVA*10^3/(sqrt(3)*V) // armature current in A
+E_r = I_a*Z_s // resultant voltage due to impedance in V
+V_t = V/sqrt(3) // terminal voltage per phase in V
+b = atand(X_r/R_r) // beta value
+E_f = sqrt(V_t^2+abs(E_r)^2-2*V_t*abs(E_r)*cosd(b-phi)) // excitation voltage per phase in V
+teta = sind(64)
+D = (E_r*teta/E_f) // torque angle
+delta = asind(abs(D))
+
+// display the result
+disp("Example 10.2 solution");
+printf(" \n Excitation voltage per phase \n E_f = %.2f V \n", E_f );
+printf(" \n Torque angle at 0.95 power factor lagging \n delta = %.2f degree \n", delta );
diff --git a/2642/CH10/EX10.3/Ex10_3.sce b/2642/CH10/EX10.3/Ex10_3.sce new file mode 100755 index 000000000..5af584787 --- /dev/null +++ b/2642/CH10/EX10.3/Ex10_3.sce @@ -0,0 +1,32 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 10 : SYNCHRONOUS MOTOR
+// Example : 10.3
+
+clc;clear; // clears the console and command history
+
+// Given data
+V = 440 // supply voltage in V
+R_a = 1.5 // per phase resistance in ohm
+X_a = 8 // syncronous reactance in ohm
+P = 4 // number of poles
+f = 50 // supply frequency in Hz
+pf = 0.9 // leading power factor
+I_a = 50 // armature current in A
+
+// caclulations
+V_t = V/sqrt(3) // terminal voltage per phase in V
+phi = acosd(pf) // angle in degree
+Z_s = R_a+%i*X_a // impedance per phase ohm
+E_r = I_a*abs(Z_s) // resultant voltage due to impedance in V
+bet = atand(X_a/R_a)
+E_f = sqrt(V_t^2+E_r^2-2*V_t*E_r*cosd(bet+phi)) // excitation voltage per phase in V
+P_dm = (((E_f*V_t)/Z_s)-((E_f^2*R_a)/Z_s^2)) // maximum power per phase in W
+
+// display the result
+disp("Example 10.3 solution");
+printf(" \n Maximum power per phase \n P_dm = %.2f W \n", P_dm );
+printf(" \n In textbook solution they took E_f = 513.5V instead of 533.33V");
diff --git a/2642/CH10/EX10.4/Ex10_4.sce b/2642/CH10/EX10.4/Ex10_4.sce new file mode 100755 index 000000000..fd29f7240 --- /dev/null +++ b/2642/CH10/EX10.4/Ex10_4.sce @@ -0,0 +1,26 @@ +// FUNDAMENTALS OF ELECTICAL MACHINES
+// M.A.SALAM
+// NAROSA PUBLISHING HOUSE
+// SECOND EDITION
+
+// Chapter 10 : SYNCHRONOUS MOTOR
+// Example : 10.4
+
+clc;clear; // clears the console and command history
+
+// Given data
+P = 4 // number of poles
+f = 50 // supply frequency in Hz
+V_t = 1500 // terminal voltage per phase in V
+E_f = 1000 // excitation voltage per phase in V
+Z_s = 12 // synchronnous impedance in ohm
+R_a = 1.5 //armature resistance in ohm
+
+// caclulations
+P_dm = (((E_f*V_t)/Z_s)-((E_f^2*R_a)/Z_s^2)) // maximum power per phase in W
+T_dm = 9.55*P_dm/1500 // maximum torque in N-m
+
+// display the result
+disp("Example 10.4 solution");
+printf(" \n Maximum power developed \n P_dm = %.0f W \n", P_dm );
+printf(" \n Maximum toruqe \n T_dm = %.1f N-m \n", T_dm );
|