diff options
Diffstat (limited to '2528/CH9')
-rwxr-xr-x | 2528/CH9/EX9.1/Ex9_1.sce | 11 | ||||
-rwxr-xr-x | 2528/CH9/EX9.10/Ex9_10.sce | 14 | ||||
-rwxr-xr-x | 2528/CH9/EX9.11/Ex9_11.sce | 21 | ||||
-rwxr-xr-x | 2528/CH9/EX9.12/Ex9_12.sce | 38 | ||||
-rwxr-xr-x | 2528/CH9/EX9.2/Ex9_2.sce | 23 | ||||
-rwxr-xr-x | 2528/CH9/EX9.3/Ex9_3.sce | 19 | ||||
-rwxr-xr-x | 2528/CH9/EX9.4/Ex9_4.sce | 15 | ||||
-rwxr-xr-x | 2528/CH9/EX9.5/Ex9_5.sce | 22 | ||||
-rwxr-xr-x | 2528/CH9/EX9.6/Ex9_6.sce | 14 | ||||
-rwxr-xr-x | 2528/CH9/EX9.7/Ex9_7.sce | 16 | ||||
-rwxr-xr-x | 2528/CH9/EX9.8/Ex9_8.sce | 24 | ||||
-rwxr-xr-x | 2528/CH9/EX9.9/Ex9_9.sce | 17 |
12 files changed, 234 insertions, 0 deletions
diff --git a/2528/CH9/EX9.1/Ex9_1.sce b/2528/CH9/EX9.1/Ex9_1.sce new file mode 100755 index 000000000..2c0ca4df4 --- /dev/null +++ b/2528/CH9/EX9.1/Ex9_1.sce @@ -0,0 +1,11 @@ +// Chapter9
+// Frequency of oscillation
+// Page.No-306
+// Example9_1
+//Figure 9.8
+// Given
+clear;clc;
+R=50000; //in Ohm
+C=0.01*10^-6; //in F
+f=1/(2*%pi*R*C);
+printf("\n The frequency of oscillation = %.0f Hz\n",f); // Result
diff --git a/2528/CH9/EX9.10/Ex9_10.sce b/2528/CH9/EX9.10/Ex9_10.sce new file mode 100755 index 000000000..8619211e5 --- /dev/null +++ b/2528/CH9/EX9.10/Ex9_10.sce @@ -0,0 +1,14 @@ +// Chapter 9
+// determine Output frequency
+// Page.No-336
+// Example9_10
+//Figure 9.40
+// Given
+clear;clc;
+R=10000; //in Ohm
+printf("\n Value of Assumed resistance is = %.0f Ohm\n",R); // Result
+
+Tout=100*10^-6;
+C=Tout/(1.1*R);
+printf("\n Value of Capacitance is = %.11f F\n",C); // Result
+printf("\n The nearst value would be 10nF");
diff --git a/2528/CH9/EX9.11/Ex9_11.sce b/2528/CH9/EX9.11/Ex9_11.sce new file mode 100755 index 000000000..44c1c254a --- /dev/null +++ b/2528/CH9/EX9.11/Ex9_11.sce @@ -0,0 +1,21 @@ +// Chapter 9
+// determine Output frequency
+// Page.No-340
+// Example9_11
+// Given
+clear;clc;
+f=2000; ///in Hz
+DC=0.8;
+T=1/f;
+Thigh=DC*T;
+printf("\n T high is = %.6f Sec\n",Thigh); // Result
+Tlow=T-Thigh;
+printf("\n T low is = %.6f Sec\n",Tlow); // Result
+//assumption
+Rb=10000; //in Ohm
+//Tlow=0.69RC
+C1=Tlow/(0.69*Rb);
+printf("\n Value of Capacitance C is = %.10f F\n",C1); // Result
+//Thigh=0.69(Ra+Rb)
+Ra=Thigh/(0.69*C1)-Rb;
+printf("\n Value of resistance Ra is = %.0f Ohm\n",Ra); // Result
diff --git a/2528/CH9/EX9.12/Ex9_12.sce b/2528/CH9/EX9.12/Ex9_12.sce new file mode 100755 index 000000000..84882ff64 --- /dev/null +++ b/2528/CH9/EX9.12/Ex9_12.sce @@ -0,0 +1,38 @@ +// Chapter 9
+// determine Output frequency
+// Page.No-344
+// Example_9_12
+//Figure 9.47
+// Given
+clear;clc;
+R=110000; //in Ohm
+C=0.1*10^-6; //in Farad
+//
+disp("When C=0.1microF")
+
+fomin=0.15/(R*C);
+printf("\n For low range with lowest frequency = %.1f Hz\n",fomin); // Result
+//
+R1=10000; //in Ohm
+fomax=0.15/(R1*C);
+printf("\n For low range with highest frequency = %.1f Hz\n",fomax); // Result
+//
+disp("When C=0.01microF")
+R=110000; //in Ohm
+C=0.01*10^-6; //in Farad
+fomin=0.15/(R*C);
+printf("\n For low range with lowest frequency = %.1f Hz\n",fomin); // Result
+//
+R1=10000; //in Ohm
+fomax=0.15/(R1*C);
+printf("\n For low range with highest frequency = %.1f Hz\n",fomax); // Result
+//
+disp("When C=0.001microF")
+R=110000; //in Ohm
+C=0.001*10^-6; //in Farad
+fomin=0.15/(R*C);
+printf("\n For low range with lowest frequency = %.1f Hz\n",fomin); // Result
+//
+R1=10000; //in Ohm
+fomax=0.15/(R1*C);
+printf("\n For low range with highest frequency = %.1f Hz\n",fomax); // Result
diff --git a/2528/CH9/EX9.2/Ex9_2.sce b/2528/CH9/EX9.2/Ex9_2.sce new file mode 100755 index 000000000..8db0fc555 --- /dev/null +++ b/2528/CH9/EX9.2/Ex9_2.sce @@ -0,0 +1,23 @@ +// Chapter9
+// Maximum and minimum Frequency of oscillation
+// Page.No-307
+// Example9_2
+//Figure 9.9
+// Given
+clear;clc;
+// for minimium frequency
+R=11100; //in Ohm
+C=0.1*10^-6; //in F
+f=1/(2*%pi*R*C);
+printf("\n The mimimum frequency of oscillation = %.1f Hz\n",f); // Result
+// for maximum frequency
+R=1100; //in Ohm
+C=0.1*10^-6; //in F
+fm=1/(2*%pi*R*C);
+printf("\n The maximum frequency of oscillation = %.0f Hz\n",fm); // Result
+printf("\n For C=0.001microF, the range is from %.1f Hz to %.0f Hz\n ", f*10,fm*10);//Result
+printf("\n For C=0.0001microF, the range is from %.1f Hz to %.0f Hz\n ", f*100,fm*100);//Result
+Rf=10000+2700; //in ohm
+Ri=5600; //in Ohm
+Av=1+Rf/Ri;
+printf("\n Gain ,Av is %.2f \n ", Av);//Result
diff --git a/2528/CH9/EX9.3/Ex9_3.sce b/2528/CH9/EX9.3/Ex9_3.sce new file mode 100755 index 000000000..0c44298f3 --- /dev/null +++ b/2528/CH9/EX9.3/Ex9_3.sce @@ -0,0 +1,19 @@ +// Chapter9
+// Frequency of oscillation
+// Page.No-310
+// Example_9_3
+//Figure 9.12-9.14
+// Given
+clear;clc;
+R=1000; //in Ohm
+C=0.1*10^-6; //in F
+f=1/(2*%pi*1.732*R*C);
+printf("\n The mimimum frequency of oscillation = %.0f Hz\n",f); // Result
+//Vo=(R+Xc)*I1-R*I2
+W=1/((6^0.5)*C*R);
+printf("\n The frequency = %.0f Hz\n",W); // Result
+//Vo/V3=1+(6*Xc/R)+(5*Xc/R^2)+(Xc/R)^3;
+Vr=1-(5/((W*C*R)^2)); //Vr=Vo/V3
+printf("\n The Vo/V3 is = %.0f \n",Vr); // Result
+printf("\n The gain of ladder network is B= V3/Vo = 1/%.0f \n",Vr); // Result
+
diff --git a/2528/CH9/EX9.4/Ex9_4.sce b/2528/CH9/EX9.4/Ex9_4.sce new file mode 100755 index 000000000..7a5520e8b --- /dev/null +++ b/2528/CH9/EX9.4/Ex9_4.sce @@ -0,0 +1,15 @@ +// Chapter9
+// value of Rf
+// Page.No-313
+// Example9_4
+//Figure 9.15
+// Given
+clear;clc;
+C=0.1*10^-6; //in F
+R=1000; //in Ohm
+Av=-29;
+Rf=-Av*R;
+printf("\n The value for Rf is = %.0f Ohm\n",Rf); // Result
+f=1/(2*%pi*6^0.5*R*C);
+printf("\n The frequency ,fo = %.0f Hz\n",f); // Result
+
diff --git a/2528/CH9/EX9.5/Ex9_5.sce b/2528/CH9/EX9.5/Ex9_5.sce new file mode 100755 index 000000000..0b042ed2f --- /dev/null +++ b/2528/CH9/EX9.5/Ex9_5.sce @@ -0,0 +1,22 @@ +// Chapter9
+// Output Frequency and Amplitudes
+// Page.No-318
+// Example9_5
+//Figure 9.21
+// Given
+clear;clc;
+Vsat=13; //in V
+R2=10000; //in ohm
+R3=20000; //in ohm
+R=33000; //in ohm
+C=0.01*10^-6; //in Farad
+Vup=Vsat*R2/R3;
+printf("\n Value of Vupperthreshold is = %.1f V\n",Vup); // Result
+//dv/dt=Vsat/RC=k
+k=Vsat/R/C;
+printf("\n dv/dt = %.0f V/S\n",k); // Result
+T=Vsat/k;
+printf("\n T = %.5f S\n",T); // Result
+
+f=1/T/2;
+printf("\nf = %.0f Hz\n",f); // Result
diff --git a/2528/CH9/EX9.6/Ex9_6.sce b/2528/CH9/EX9.6/Ex9_6.sce new file mode 100755 index 000000000..5fe80af1e --- /dev/null +++ b/2528/CH9/EX9.6/Ex9_6.sce @@ -0,0 +1,14 @@ +// Chapter 9
+// 2kHZ Square Wave generator
+// Page.No-323
+// Example9_6
+//Figure 9.23
+// Given
+clear;clc;
+R1=10000; //in Ohm
+R2=R1/0.859; //in Ohm
+fo=2000; //in Hz
+
+printf("\n R2 is %.0f Ohm\n",R2); // Result
+C=1/(2*R1*fo);
+printf("\n C is %.9f F\n",C); // Result
diff --git a/2528/CH9/EX9.7/Ex9_7.sce b/2528/CH9/EX9.7/Ex9_7.sce new file mode 100755 index 000000000..f9167d33c --- /dev/null +++ b/2528/CH9/EX9.7/Ex9_7.sce @@ -0,0 +1,16 @@ +// Chapter 9
+// determine Output frequency
+// Page.No-327
+// Example9_7
+//Figure 9.28
+// Given
+clear;clc;
+Vp=12; //in V
+R1=4700; //in Ohm
+R2=2000; //in Ohm
+R3=20000; //in Ohm
+C=1.1*10^-9; //in Farad
+Vc=Vp*(R3/(R2+R3));
+printf("\n The control Voltage is = %.2f V\n",Vc); // Result
+fo=2*(Vp-Vc)/(Vp*R1*C);
+printf("\n Output frequency = %.0f Hz\n",fo); // Result
diff --git a/2528/CH9/EX9.8/Ex9_8.sce b/2528/CH9/EX9.8/Ex9_8.sce new file mode 100755 index 000000000..ef1b41867 --- /dev/null +++ b/2528/CH9/EX9.8/Ex9_8.sce @@ -0,0 +1,24 @@ +// Chapter 9
+// determine Output frequency
+// Page.No-328
+// Example9_8
+//Figure 9.29
+// Given
+clear;clc;
+Vp=12; //in V
+R1=4700; //in Ohm
+R2=2000; //in Ohm
+R3=20000; //in Ohm
+C=1.1*10^-9; //in Farad
+Vc=Vp*(R3/(R2+R3));
+//for minimum Vc
+Vcmin=Vc-0.5;
+printf("\n The control Voltage is = %.2f V\n",Vcmin); // Result
+fo=2*(Vp-Vcmin)/(Vp*R1*C);
+printf("\n Output frequency = %.0f Hz\n",fo); // Result
+//for maximum Vc
+disp("For minimum frequency Use maximum Vc");
+Vcmin1=Vc+0.5;
+printf("\n The control Voltage is = %.2f V\n",Vcmin1); // Result
+fo=2*(Vp-Vcmin1)/(Vp*R1*C);
+printf("\n Output frequency = %.0f Hz\n",fo); // Result
diff --git a/2528/CH9/EX9.9/Ex9_9.sce b/2528/CH9/EX9.9/Ex9_9.sce new file mode 100755 index 000000000..e65412c84 --- /dev/null +++ b/2528/CH9/EX9.9/Ex9_9.sce @@ -0,0 +1,17 @@ +// Chapter 9
+// determine Output frequency
+// Page.No-333
+// Example9_9
+//Figure 9.37
+// Given
+clear;clc;
+Vp=6; //in V
+R1=4000; //in Ohm
+C=330*10^-12; //in Farad
+C2=270*10^-12; //in Farad
+fo=0.3/(R1*C);
+printf("\n Free runing frequency = %.0f Hz\n",fo); // Result
+fl=8*fo/Vp;
+printf("\n Lock Range = %.0f Hz\n",fl); // Result
+fc=sqrt(2*%pi*fl/(3600*C2))/(2*%pi);
+printf("\n Capture Range = %.0f Hz\n",fc); // Result
|