summaryrefslogtreecommitdiff
path: root/25/CH12
diff options
context:
space:
mode:
Diffstat (limited to '25/CH12')
-rwxr-xr-x25/CH12/EX12.1/12_1.sce15
-rwxr-xr-x25/CH12/EX12.2/12_2.sce8
-rwxr-xr-x25/CH12/EX12.3/12_3.sce18
-rwxr-xr-x25/CH12/EX12.4/12_4.sce6
-rwxr-xr-x25/CH12/EX12.5/12_5.sce11
-rwxr-xr-x25/CH12/EX12.6/12_6.sce5
6 files changed, 63 insertions, 0 deletions
diff --git a/25/CH12/EX12.1/12_1.sce b/25/CH12/EX12.1/12_1.sce
new file mode 100755
index 000000000..9a7de7a37
--- /dev/null
+++ b/25/CH12/EX12.1/12_1.sce
@@ -0,0 +1,15 @@
+// example:-12.1,page no.-668.
+//program to compute directivity,radiation intensity,F,the effective area.
+syms Etheta Hphi ko no Io l r pi theta C phi lamda;
+Etheta=((%i*ko*no*Io*l)/(4*pi*r))*sin(theta)*exp(-%i*ko*r);
+Hphi=((%i*ko*Io*l)/(4*pi*r))*sin(theta)*exp(-%i*ko*r);
+F=(r^2)*(Etheta*conj(Hphi));
+Prad=C*integ(integ(sin(theta)^3,theta),phi);
+Prad=limit(Prad,theta,pi)-limit(Prad,theta,0);
+Prad=limit(Prad,phi,2*pi)-limit(Prad,phi,0); // take cos(pi)=-1;
+Prad=8*pi*C/3;
+D=4*pi*C/Prad;
+Ac=((lamda^2)*D)/(4*pi);
+disp(F,'the radiation intensity is given by = ')
+disp(D,'directivity is given by = ')
+disp(Ac,'the effective area of the dipole = ') \ No newline at end of file
diff --git a/25/CH12/EX12.2/12_2.sce b/25/CH12/EX12.2/12_2.sce
new file mode 100755
index 000000000..63d4fcaa8
--- /dev/null
+++ b/25/CH12/EX12.2/12_2.sce
@@ -0,0 +1,8 @@
+// example:-12.2,page no.-674.
+// program to find the reactive power in dbm.
+Pt=120;f=6*10^9;
+Gt=10^4.2;Gr=10^3.1;
+lamda=0.05;R=3.59*10^7;
+Pr=(Pt*Gt*Gr*(lamda^2))/((4*%pi*R)^2);
+Pr=10*log10(Pr/0.001);
+disp(Pr,'received power in dBm will be = ') \ No newline at end of file
diff --git a/25/CH12/EX12.3/12_3.sce b/25/CH12/EX12.3/12_3.sce
new file mode 100755
index 000000000..79dabd26b
--- /dev/null
+++ b/25/CH12/EX12.3/12_3.sce
@@ -0,0 +1,18 @@
+// example:-12.3,page no.-677.
+// program to calculate the input and output SNR.
+f=4*10^9;B=1*10^6;Grf=10^2;Gif=10^3;Lt=10^0.15;Lm=10^0.6;To=290;
+Fm=10^0.7;Tm=(Fm-1)*To;Tp=300;Tb=200;eta=0.9;
+Frf=10^0.3;Fif=10^0.11;k=1.38*10^-23;
+Trf=(Frf-1)*To;
+Tif=(Fif-1)*To;
+Trec=Trf+(Tm/Grf)+((Tif*Lm)/Grf);
+Ttl=(Lt-1)*Tp;
+Ta=eta*Tb+(1-eta)*Tp;
+Ni=k*B*Ta;
+Ni=10*log10(Ni/0.001); // converting in to dBm.
+si=-80; // in dBm.
+SNRi=si-Ni; // input SNR.
+Tsys=Ta+Ttl+Lt*Trec;
+SNRo=si-10*log10((k*B*Tsys)/0.001);
+disp(SNRi,'input SNR in dB = ')
+disp(SNRo,'output SNR in dB = ') \ No newline at end of file
diff --git a/25/CH12/EX12.4/12_4.sce b/25/CH12/EX12.4/12_4.sce
new file mode 100755
index 000000000..47162d870
--- /dev/null
+++ b/25/CH12/EX12.4/12_4.sce
@@ -0,0 +1,6 @@
+// example:-12.4,page no.-683.
+// program to find the maximum range of radar.
+G=10^2.8;Pt=2000;sigma=12;
+Pmin=10^-12;lamda=0.03;
+Rmax=((Pt*(G^2)*sigma*(lamda^2))/(((4*%pi)^3)*Pmin))^(0.25);
+disp(Rmax,'the maximum range of the radar in meter = ') \ No newline at end of file
diff --git a/25/CH12/EX12.5/12_5.sce b/25/CH12/EX12.5/12_5.sce
new file mode 100755
index 000000000..1cb191097
--- /dev/null
+++ b/25/CH12/EX12.5/12_5.sce
@@ -0,0 +1,11 @@
+//example:-12.5,page no.-702.
+// program to find the J/S ratio.
+Gr=10^3.5;Pj=1000;R=3000;Br=1*10^6;Bj=20*10^6;
+Gj=10;lamda=0.03;Pt=10^5;sigma=4;Rj=10000;
+x=(Pj/Pt)*((4*%pi*(R^2)*Gj)/(sigma*Gr))*(Br/Bj); // x=J/S
+x=10*log10(x);
+Grsl=10^(3.5-2);// radar anteena gain in its sidelobe region.
+x1=(Pj/Pt)*(((R^4)*Gj*Grsl)/((Gr^2)*(Rj^2)))*(Br/Bj);
+x1=10*log10(x1);
+disp(x,'THE J/S ration for the SSJ case in dB is = ')
+disp(x1,'THE J/S ratio for the SOJ case in dB is = ') \ No newline at end of file
diff --git a/25/CH12/EX12.6/12_6.sce b/25/CH12/EX12.6/12_6.sce
new file mode 100755
index 000000000..89cf9c131
--- /dev/null
+++ b/25/CH12/EX12.6/12_6.sce
@@ -0,0 +1,5 @@
+// example:-12.6,page no.-704.
+// program to calculate the power density of 20 m from the anteena.
+G=10^4;Pin=5;R=20;
+S=(Pin*G)/(4*%pi*(R^2))*0.1;
+disp(S,'the power density in the main beam of the anteena at a distance of 20 m in mw/cm^2 = ') \ No newline at end of file