summaryrefslogtreecommitdiff
path: root/2498/CH2
diff options
context:
space:
mode:
Diffstat (limited to '2498/CH2')
-rwxr-xr-x2498/CH2/EX2.1/ex2_1.sce43
-rwxr-xr-x2498/CH2/EX2.10/ex2_10.sce36
-rwxr-xr-x2498/CH2/EX2.11/ex2_11.sce13
-rwxr-xr-x2498/CH2/EX2.12/ex2_12.sce17
-rwxr-xr-x2498/CH2/EX2.13/ex2_13.sce11
-rwxr-xr-x2498/CH2/EX2.14/ex2_14.sce24
-rwxr-xr-x2498/CH2/EX2.15/ex2_15.sce18
-rwxr-xr-x2498/CH2/EX2.17/ex2_17.sce24
-rwxr-xr-x2498/CH2/EX2.18/ex2_18.sce33
-rwxr-xr-x2498/CH2/EX2.2/ex2_2.sce28
-rwxr-xr-x2498/CH2/EX2.21/ex2_21.sce22
-rwxr-xr-x2498/CH2/EX2.22/ex2_22.sce20
-rwxr-xr-x2498/CH2/EX2.23/ex2_23.sce28
-rwxr-xr-x2498/CH2/EX2.24/ex2_24.sce23
-rwxr-xr-x2498/CH2/EX2.25/ex2_25.sce10
-rwxr-xr-x2498/CH2/EX2.26/ex2_26.sce14
-rwxr-xr-x2498/CH2/EX2.27/ex2_27.sce20
-rwxr-xr-x2498/CH2/EX2.28/ex2_28.sce11
-rwxr-xr-x2498/CH2/EX2.29/ex2_29.sce20
-rwxr-xr-x2498/CH2/EX2.3/ex2_3.sce23
-rwxr-xr-x2498/CH2/EX2.30/ex2_30.sce20
-rwxr-xr-x2498/CH2/EX2.31/ex2_31.sce13
-rwxr-xr-x2498/CH2/EX2.7/ex2_7.sce20
-rwxr-xr-x2498/CH2/EX2.9/ex2_9.sce25
24 files changed, 516 insertions, 0 deletions
diff --git a/2498/CH2/EX2.1/ex2_1.sce b/2498/CH2/EX2.1/ex2_1.sce
new file mode 100755
index 000000000..bb2d0325f
--- /dev/null
+++ b/2498/CH2/EX2.1/ex2_1.sce
@@ -0,0 +1,43 @@
+// Exa 2.1
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+N2 = 4;
+N1 = 1;
+R_L = 1*10^3;// in ohm
+ Vm = 40;// in V
+V_Lav = Vm/%pi;// in V
+// The average load voltage
+V_LDC = V_Lav;// in V
+disp(V_LDC,"The average load voltage in V is");
+Im = Vm/R_L;// in A
+I_DC = Im/%pi;// in A
+I_DC= I_DC*10^3;// in mA
+disp(I_DC,"The average load current in mA is");
+I_DC= I_DC*10^-3;// in A
+// The RMS voltage
+V_Lrms = Vm/2;// in V
+disp(V_Lrms,"The RMS voltage in V is");
+// The RMS current
+Irms = V_Lrms/R_L;// in A
+Irms= Irms*10^3;// in mA
+disp(Irms,"The RMS current in mA is");
+Irms= Irms*10^-3;// in A
+//Eta = (P_ODC/P_iAC)*100;
+I_Loc = I_DC;// in A
+P_ODC = (I_Loc^2)*R_L;// in W
+P_iAC = (Irms^2)*R_L;// in W
+// The efficiency of rectification
+Eta = (P_ODC/P_iAC)*100;// in %
+disp(Eta,"The efficiency of rectification in % is");
+V2rms = Vm/sqrt(2);
+I2rms = Irms;// in A
+// The value of TUF
+TUF = ((P_ODC)/(V2rms*I2rms))*100;// in %
+disp(TUF,"The value of TUF in % is");
+// The ripple factor
+Gamma = (sqrt((V_Lrms^2)-(V_LDC^2)))/V_LDC;
+Gamma = round(Gamma * 100);// in % done by own
+disp(Gamma,"The ripple factor in % is");
diff --git a/2498/CH2/EX2.10/ex2_10.sce b/2498/CH2/EX2.10/ex2_10.sce
new file mode 100755
index 000000000..beca5f664
--- /dev/null
+++ b/2498/CH2/EX2.10/ex2_10.sce
@@ -0,0 +1,36 @@
+// Exa 2.10
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R_L = 1;// in k ohm
+R_L = R_L * 10^3;// in ohm
+Rf = 1;// in ohm
+R2 = 2;// in ohm
+N1 = 4;
+N2 = 1;
+V1rms = 240;// in V
+V2rms = (N2/N1)*V1rms;// in V
+Vm = sqrt(2)*V2rms;// in V
+// The average load current
+I_LDC = (2*Vm)/(%pi*(R2+Rf+R_L));// in A
+I_LDC= I_LDC *10^3;// in mA
+disp(I_LDC,"The average load current in mA is");
+I_LDC= I_LDC *10^-3;// in A
+// The average load voltage at no load
+V_NL = (2*Vm)/%pi;// in V
+disp(V_NL,"The average load voltage at no load in V is");
+// The average load voltage at full load
+V_LDC = I_LDC*R_L;// in V
+disp(V_LDC,"The average load voltage at full load in V is");
+// The percentage load regulation
+Per_loadReg= (V_NL-V_LDC)/V_LDC*100;// in %
+disp(Per_loadReg,"The percentage load regulation in % is : ")
+Im = Vm/(R_L+R2+Rf);// in A
+Irms = Im/2;// in A
+P_iAC = (Vm^2)/(2*(R2+Rf+R_L));// in W
+P_ODC = (I_LDC^2)*R_L;// in W
+// The rectification efficiency
+Eta = (P_ODC/P_iAC)*100;// in %
+disp(Eta,"The rectification efficiency in % is");
diff --git a/2498/CH2/EX2.11/ex2_11.sce b/2498/CH2/EX2.11/ex2_11.sce
new file mode 100755
index 000000000..852719c28
--- /dev/null
+++ b/2498/CH2/EX2.11/ex2_11.sce
@@ -0,0 +1,13 @@
+// Exa 2.11
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R1 = 2;// in k ohm
+R2 = 2;// in k ohm
+V_AB = 20;// in V
+Vo = V_AB*(R1/(R1+R2));// in V
+// The required PIV
+V_AC = Vo;// in V
+disp(V_AC,"The required PIV in V is");
diff --git a/2498/CH2/EX2.12/ex2_12.sce b/2498/CH2/EX2.12/ex2_12.sce
new file mode 100755
index 000000000..13032a5ef
--- /dev/null
+++ b/2498/CH2/EX2.12/ex2_12.sce
@@ -0,0 +1,17 @@
+// Exa 2.12
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Vrms = 10;// in V
+r_f = 0.3;// in ohm
+R_L = 2;// in ohm
+Vm = sqrt(2)*Vrms;// in V
+Im = Vm/(R_L+r_f);// in A
+// The value of Idc
+Idc = Im/%pi;// in A
+disp(Idc,"The value of Idc in A is");
+// The RMS value of output current
+Irms = Im/2;// in A
+disp(Irms,"The RMS value of output current in A is");
diff --git a/2498/CH2/EX2.13/ex2_13.sce b/2498/CH2/EX2.13/ex2_13.sce
new file mode 100755
index 000000000..29d6cfa5f
--- /dev/null
+++ b/2498/CH2/EX2.13/ex2_13.sce
@@ -0,0 +1,11 @@
+// Exa 2.13
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Vdc = 50;// in V
+Vrms = 5;// in V
+// The ripple factor,
+Gamma = Vrms/Vdc;
+disp(Gamma,"The ripple factor is");
diff --git a/2498/CH2/EX2.14/ex2_14.sce b/2498/CH2/EX2.14/ex2_14.sce
new file mode 100755
index 000000000..938396c5d
--- /dev/null
+++ b/2498/CH2/EX2.14/ex2_14.sce
@@ -0,0 +1,24 @@
+// Exa 2.14
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Vrms = 50;// in V
+r_f = 20;// in ohm
+R_L = 980;// in ohm
+Vm = sqrt(2)*Vrms;// in V
+Im = (Vm)/(R_L+r_f);
+// The mean load current
+Idc = (2*Im)/%pi;// in A
+Idc = round(Idc * 10^3);// in mA
+disp(Idc,"The mean load current in mA is");
+// The RMS load current
+Irms = Im/sqrt(2);// in A
+Irms = Irms*10^3;// in mA
+disp(Irms,"The RMS load current in mA is");
+a = 0.812;// assumed
+// The output efficiency
+Eta = a/(1+(r_f/R_L));
+Eta = Eta * 100;// in %
+disp(Eta,"The output efficiency in % is");
diff --git a/2498/CH2/EX2.15/ex2_15.sce b/2498/CH2/EX2.15/ex2_15.sce
new file mode 100755
index 000000000..af3c03b0f
--- /dev/null
+++ b/2498/CH2/EX2.15/ex2_15.sce
@@ -0,0 +1,18 @@
+// Exa 2.15
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+V = 10;// in V
+V1 = 2.5;// in V
+R = 1;// in Mohm
+R = R * 10^6;// in ohm
+i = (V-V1)/R;// in A
+i = i * 10^6;// in µA
+// The output voltage for a complete cycle
+Vo1 = (i*10^-6*R)+V1;// in V
+disp(Vo1,"The output voltage for a complete cycle in V is");
+// The output voltage for half neagtive cycle
+Vo2 = V1;// in V
+disp(Vo2,"The output voltage for half negative cycle in V is");
diff --git a/2498/CH2/EX2.17/ex2_17.sce b/2498/CH2/EX2.17/ex2_17.sce
new file mode 100755
index 000000000..457cf3016
--- /dev/null
+++ b/2498/CH2/EX2.17/ex2_17.sce
@@ -0,0 +1,24 @@
+// Exa 2.17
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+V1 = 230;// iin V
+N2 = 1;
+N1 = 5;
+R_L = 100;// in ohm
+V2 = V1*N2/N1;// in V
+Vrms = V2;// in V
+Vs = V2/2;// in V
+Vm = sqrt(2)*Vs;// in V
+// The dc output voltage
+Vdc = (2*Vm)/%pi;// in V
+disp(Vdc,"The dc output voltage in V is");
+// The PIV value
+PIV = round(2*Vm);// in V
+disp(PIV,"The PIV value in V is");
+// The rectification efficiency
+Eta = 0.812;
+Eta = Eta*100;// in %
+disp(Eta,"The rectification efficiency in % is");
diff --git a/2498/CH2/EX2.18/ex2_18.sce b/2498/CH2/EX2.18/ex2_18.sce
new file mode 100755
index 000000000..9f5376c5a
--- /dev/null
+++ b/2498/CH2/EX2.18/ex2_18.sce
@@ -0,0 +1,33 @@
+// Exa 2.18
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+V1 = 220;// in V
+N2 = 1;
+N1 = 10;
+R_L = 250;// in ohm
+V2 = V1 * (N2/N1);// in V
+Vm = sqrt(2)*V2;// in V
+Im =Vm/R_L;// in A
+Iav = (2*Im)/%pi;// in A
+Idc = Iav;// in A
+// The dc output volatge
+Vdc = Idc* R_L;// in V
+disp(Vdc,"The dc output volatge in V is");
+Pdc = (Idc^2)*R_L;// in W
+Irms = (Im)/sqrt(2);// in A
+Pac = (Irms^2)*R_L;// in W
+// The rectification efficiency
+Eta = (Pdc/Pac)*100;// in %
+disp(Eta,"The rectification efficiency in % is");
+// The peak inverse volatge
+PIV = Vm;// in V
+disp(PIV,"The peak inverse volatge in V is");
+f_in = 50;// in Hz
+// The output frequency
+f_out = 2*f_in;// in Hz
+disp(f_out,"The output frequency in Hz is");
+
+// Note: The answer of rectification efficiency in the book is not accurate.
diff --git a/2498/CH2/EX2.2/ex2_2.sce b/2498/CH2/EX2.2/ex2_2.sce
new file mode 100755
index 000000000..17ce19975
--- /dev/null
+++ b/2498/CH2/EX2.2/ex2_2.sce
@@ -0,0 +1,28 @@
+// Exa 2.2
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Rf = 10;// in ohm
+R_L = 1;// in k ohm
+R_L = R_L * 10^3;// in ohm
+Vi = 230;// in V
+Vm = Vi*sqrt(2);
+//I_DC = Im/%pi;
+I_DC = Vm/((R_L+Rf)*%pi);// in A
+Irms = Vm/((R_L+Rf)*2);// in A
+// The input ac power
+P_iAC = (Irms^2)*(Rf+R_L);// in W
+disp(P_iAC,"The input ac power in W is");
+// The output ac power
+P_ODC = (I_DC^2)*R_L;// in W
+disp(P_ODC,"The output ac power in W is");
+// The efficiency
+Eta = (P_ODC/P_iAC)*100;// in %
+disp(Eta,"The efficiency in % is");
+// The percentage regulation
+R = (Rf/R_L)*100;// in %
+disp(R,"The percentage regulation in % is");
+
+// Note: The calculated value of input a.c. power in the book is wrong.
diff --git a/2498/CH2/EX2.21/ex2_21.sce b/2498/CH2/EX2.21/ex2_21.sce
new file mode 100755
index 000000000..577441ef2
--- /dev/null
+++ b/2498/CH2/EX2.21/ex2_21.sce
@@ -0,0 +1,22 @@
+// Exa 2.21
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R_F = 0.01;
+Vdc = 30;// in V
+R_L = 1;// in k ohm
+R_L = R_L * 10^3;// in ohm
+Idc = Vdc/R_L;// in A
+Idc = Idc * 10^3;// in mA
+// Vdc = Vm-( (5000*Idc)/C );
+Gamma = 0.01;// ripple factor
+//Gamma = 2900/(C*R_L);
+C = 2900/(Gamma*R_L);// in F
+Vm = Vdc + ((5000*Idc*10^-3)/C);// in V
+// The input voltage required
+V2 = (2*Vm)/sqrt(2);// in V
+disp(V2,"The input voltage required in V is");
+
+//Note: The value of Vm in the book is not accurate, So the answer in the book is wrong.
diff --git a/2498/CH2/EX2.22/ex2_22.sce b/2498/CH2/EX2.22/ex2_22.sce
new file mode 100755
index 000000000..1409854a8
--- /dev/null
+++ b/2498/CH2/EX2.22/ex2_22.sce
@@ -0,0 +1,20 @@
+// Exa 2.22
+clc;
+clear;
+close;
+format('v',7)
+// Given data
+V_L = 25;// in V
+I_L = 200;// in mA
+I_L = I_L * 10^-3;// in A
+R_L = V_L/I_L;// in ohm
+Gamma = 3/100;
+//Gamma = 1/(6*sqrt(2)*(omega^2)*L*C);
+f = 50;// in Hz
+omega = 2*%pi*f;// in rad/sec
+//LC = 1/( 6*sqrt(2)*(omega^2)*Gamma )
+L = R_L/(3*omega);// in H
+disp(L,"The value of L in H is");
+C = 1/( 6*sqrt(2)*(omega^2)*Gamma*L );// in F
+C = C * 10^6;// in µF
+disp(C,"The value of C in µF is");
diff --git a/2498/CH2/EX2.23/ex2_23.sce b/2498/CH2/EX2.23/ex2_23.sce
new file mode 100755
index 000000000..6dcebb9cc
--- /dev/null
+++ b/2498/CH2/EX2.23/ex2_23.sce
@@ -0,0 +1,28 @@
+// Exa 2.23
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Vm = 15;// in V
+// The output voltage
+Vdc = (2*sqrt(2)*Vm)/%pi;// in V
+disp(Vdc,"The output voltage in V is");
+R_L = 5;// in ohm
+Idc = Vdc/R_L;// in A
+disp(Idc,"The current in A is");
+L = 50;// in mH
+L = L * 10^-3;// in H
+C = 1000;// in µF
+C = C * 10^-6;// in F
+f = 50;// in Hz
+omega = 2*%pi*f;// in rad/sec
+// The ripple factor
+Gamma = 1/( 6*sqrt(2)*(omega^2)*L*C );
+disp(Gamma,"The ripple factor is");
+// Im =Vm/X_L = (Vm*sqrt(2))/(2*%pi*f*L);
+Im = (Vm*sqrt(2))/(2*%pi*f*L);// in A
+I_Lmin = Im;// in A
+// The maximum value of R_L
+R_Lmax = Vdc/I_Lmin;// in ohm
+disp(R_Lmax,"The maximum value of R_L in ohm is");
diff --git a/2498/CH2/EX2.24/ex2_24.sce b/2498/CH2/EX2.24/ex2_24.sce
new file mode 100755
index 000000000..5a76e3e74
--- /dev/null
+++ b/2498/CH2/EX2.24/ex2_24.sce
@@ -0,0 +1,23 @@
+// Exa 2.24
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+f = 50;// in Hz
+Vrms = 280;// in V
+Vm = sqrt(2)*Vrms;// in V
+V_Lmax = Vm;// in V
+Idc = 100;// in mA
+Idc =Idc * 10^-3;// in A
+C2 = 10;// in µF
+C2 = C2 * 10^-6;// in F
+C1 = C2 ;// in F
+R_L =V_Lmax/Idc;// in ohm
+L = 104;// in H
+omega = 2*%pi*f;// in rad/sec
+// The percentage ripple
+Gamma = sqrt(2)/( 8*omega^3*C1*C2*L*R_L)*100;// in %
+disp(Gamma,"The percentage ripple in % is");
+
+// Note: There is calculation error to find the value of gamma, So the answer in the book is wrong.
diff --git a/2498/CH2/EX2.25/ex2_25.sce b/2498/CH2/EX2.25/ex2_25.sce
new file mode 100755
index 000000000..587ea7ea9
--- /dev/null
+++ b/2498/CH2/EX2.25/ex2_25.sce
@@ -0,0 +1,10 @@
+// Exa 2.25
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Vin = 15;// in V
+// Peak output voltage,
+Vout = Vin;// in V
+disp(Vout,"Peak output voltage in V is");
diff --git a/2498/CH2/EX2.26/ex2_26.sce b/2498/CH2/EX2.26/ex2_26.sce
new file mode 100755
index 000000000..3f3115bbd
--- /dev/null
+++ b/2498/CH2/EX2.26/ex2_26.sce
@@ -0,0 +1,14 @@
+// Exa 2.26
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R_L = 2;// in k ohm
+R_L = R_L * 10^3;// in ohm
+R = 2;// in k ohm
+R = R * 10^3;// in ohm
+Vin = 5;// in V
+// The peak output voltage
+Vout = (R_L/(R+R_L))*Vin;// in V
+disp(Vout,"The peak output voltage in V is");
diff --git a/2498/CH2/EX2.27/ex2_27.sce b/2498/CH2/EX2.27/ex2_27.sce
new file mode 100755
index 000000000..183370754
--- /dev/null
+++ b/2498/CH2/EX2.27/ex2_27.sce
@@ -0,0 +1,20 @@
+// Exa 2.27
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Vi = 10;// in V
+V1 = 6;// in V
+R = 10;// in k ohm
+R = R * 10^3;// in ohm
+// The value of i_Rmax
+i_Rmax = (Vi-V1)/R;// in A
+i_Rmax = i_Rmax * 10^3;// in mA
+Vi = -10;// in V
+V1 = 8;// in V
+// The value of i_R
+i_R =(Vi+V1)/R;// in A
+i_R =i_R * 10^3;// in mA
+disp(i_Rmax,"The value of i_Rmax in mA is : ")
+disp(i_R,"The value of i_R in mA is : ")
diff --git a/2498/CH2/EX2.28/ex2_28.sce b/2498/CH2/EX2.28/ex2_28.sce
new file mode 100755
index 000000000..59e708daa
--- /dev/null
+++ b/2498/CH2/EX2.28/ex2_28.sce
@@ -0,0 +1,11 @@
+// Exa 2.28
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Vout = -0.7;// in V
+V = -12;// in V
+// The output voltage
+V_R =V-Vout;// in V
+disp(V_R,"The output voltage in V is");
diff --git a/2498/CH2/EX2.29/ex2_29.sce b/2498/CH2/EX2.29/ex2_29.sce
new file mode 100755
index 000000000..25ce477f6
--- /dev/null
+++ b/2498/CH2/EX2.29/ex2_29.sce
@@ -0,0 +1,20 @@
+// Exa 2.29
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Vin = 10;// in V
+V1 = 2;// in V
+// Vin -V_C - V1 = 0;
+V_C =Vin-V1;// in V
+// During positive half cycle the output voltage
+Vout = Vin-V_C;// in V
+disp(Vout,"During positive half cycle the output voltage in V is : ")
+Vin = -10;// in V
+V1 = 8;// in V
+// Vin-V1-Vout = 0;
+// During negative half cycle the output voltage
+Vout = Vin-V1;// in V
+disp(Vout,"During negative half cycle the output voltage in V is : ")
+
diff --git a/2498/CH2/EX2.3/ex2_3.sce b/2498/CH2/EX2.3/ex2_3.sce
new file mode 100755
index 000000000..308f4769a
--- /dev/null
+++ b/2498/CH2/EX2.3/ex2_3.sce
@@ -0,0 +1,23 @@
+// Exa 2.3
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+V1 = 230;// in V
+N2= 1;
+N1 = 4;
+R_L = 1;// in k ohm
+R_L = R_L * 10^3;// in ohm
+Vd = 0.7;// in V
+// V_LDC = (Vm-Vd)/%pi;// in V
+V2 = V1*(N2/N1);// in V
+// Vm = sqrt(2)*Vrms;
+Vm = sqrt(2)*V2;// in V
+// The output dc voltage
+V_LDC = (Vm-Vd)/%pi;// in V
+disp(V_LDC,"The output dc voltage in V is");
+// The current for a load resistance
+I_LDC = V_LDC/R_L;// in A
+I_LDC = I_LDC * 10^3;// in mA
+disp(I_LDC,"The current for a load resistance in mA is");
diff --git a/2498/CH2/EX2.30/ex2_30.sce b/2498/CH2/EX2.30/ex2_30.sce
new file mode 100755
index 000000000..425f09fc9
--- /dev/null
+++ b/2498/CH2/EX2.30/ex2_30.sce
@@ -0,0 +1,20 @@
+// Exa 2.30
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Vin = 10;// in V
+V1 = 2;// in V
+// Vin-V_C+V1 = 0;
+V_C = Vin+V1;// in V
+//During positive half cycle the output voltage
+Vout = Vin-V_C;// in V
+disp(Vout,"During positive half cycle the output voltage in V is");
+Vin = -10;// iin V
+V1 = 12;// in V
+// Vin-V1-Vout = 0;
+//During negative half cycle the output voltage
+Vout = Vin-V1;// in V
+disp(Vout,"During negative half cycle the output voltage in V is");
+
diff --git a/2498/CH2/EX2.31/ex2_31.sce b/2498/CH2/EX2.31/ex2_31.sce
new file mode 100755
index 000000000..64d295589
--- /dev/null
+++ b/2498/CH2/EX2.31/ex2_31.sce
@@ -0,0 +1,13 @@
+// Exa 2.31
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+Vi = 20;// in V
+V1 = 5;// in V
+Vc = Vi-V1;// in V
+Vo = -5;// in V
+// The value of Vo,
+Vo = Vi+Vc;// in V
+disp(Vo,"The value of Vo in V is");
diff --git a/2498/CH2/EX2.7/ex2_7.sce b/2498/CH2/EX2.7/ex2_7.sce
new file mode 100755
index 000000000..d756842d1
--- /dev/null
+++ b/2498/CH2/EX2.7/ex2_7.sce
@@ -0,0 +1,20 @@
+// Exa 2.7
+clc;
+clear;
+close;
+format('v',6)
+// Given data
+R1 = 2.2;// in k ohm
+R2 = 2.2;// in kohm
+R3 = 4.7;// in k ohm
+R = (R2*R3)/(R2+R3);// in k ohm
+Vin = 200;
+// Vo = (R/(R1+R))*Vin;
+// The PIV rating for first diode
+Vomax= round(R/(R1+R)*Vin);// in V
+disp(Vomax,"The PIV rating for first diode in V is : ")
+Rdas = (R1*R3)/(R1+R3);// in k ohm
+// Vo = (Rdas/(R1+Rdas))*(-Vin);
+// The PIV rating for second diode
+Vomax=round(Rdas/(R1+Rdas)*Vin);// in V
+disp(Vomax,"The PIV rating for second diode in V is : ")
diff --git a/2498/CH2/EX2.9/ex2_9.sce b/2498/CH2/EX2.9/ex2_9.sce
new file mode 100755
index 000000000..80bd8d10e
--- /dev/null
+++ b/2498/CH2/EX2.9/ex2_9.sce
@@ -0,0 +1,25 @@
+// Exa 2.9
+clc;
+clear;
+close;
+format('v',5)
+// Given data
+// Vi = 15*sind(314*t);
+Vm = 15;// in V
+R_L = 1;// in k ohm
+R_L = R_L * 10^3;// in ohm
+Im = Vm/R_L;// in A
+Im = Im * 10^3;// in mA
+Idc = Im/%pi;// in mA
+// The average current
+I_Dav = Idc;// in mA
+disp(I_Dav,"The average current in mA is");
+// The RMS current
+I_Drms = Im/2;// in mA
+disp(I_Drms,"The RMS current in mA is");
+// The peak diode current
+I_Dpeak = Im;// in mA
+disp(I_Dpeak,"The peak diode current in mA is");
+// The PIV of diode
+PIV = 2*Vm;// in V
+disp(PIV,"The PIV of diode in V is");