summaryrefslogtreecommitdiff
path: root/2471/CH4
diff options
context:
space:
mode:
Diffstat (limited to '2471/CH4')
-rwxr-xr-x2471/CH4/EX4.1/Ex4_1.sce16
-rwxr-xr-x2471/CH4/EX4.10/Ex4_10.sce18
-rwxr-xr-x2471/CH4/EX4.2/Ex4_2.sce17
-rwxr-xr-x2471/CH4/EX4.3/Ex4_3.sce27
-rwxr-xr-x2471/CH4/EX4.4/Ex4_4.sce24
-rwxr-xr-x2471/CH4/EX4.5/Ex4_5.sce32
-rwxr-xr-x2471/CH4/EX4.6/Ex4_6.sce24
-rwxr-xr-x2471/CH4/EX4.7/Ex4_7.sce32
-rwxr-xr-x2471/CH4/EX4.8/Ex4_8.sce16
-rwxr-xr-x2471/CH4/EX4.9/Ex4_9.sce31
10 files changed, 237 insertions, 0 deletions
diff --git a/2471/CH4/EX4.1/Ex4_1.sce b/2471/CH4/EX4.1/Ex4_1.sce
new file mode 100755
index 000000000..d12e67b49
--- /dev/null
+++ b/2471/CH4/EX4.1/Ex4_1.sce
@@ -0,0 +1,16 @@
+clear ;
+clc;
+// Example 4.1
+printf('Example 4.1\n\n');
+printf('Page No. 88\n\n');
+
+// given
+K = 45// Thermal Conductivity in W/m-K
+L = 5*10^-3;// thickness in metre
+T1 = 100;// in degree celcius
+T2 = 99.9;// in degree celcius
+A = 1;// Area in m^2
+
+//By Fourier law of conduction
+Q = ((K*A*(T1-T2))/L);// in Watts
+printf('The rate of conductive heat transfer is %.0f W \n',Q)
diff --git a/2471/CH4/EX4.10/Ex4_10.sce b/2471/CH4/EX4.10/Ex4_10.sce
new file mode 100755
index 000000000..031e02de9
--- /dev/null
+++ b/2471/CH4/EX4.10/Ex4_10.sce
@@ -0,0 +1,18 @@
+clear ;
+clc;
+// Example 4.10
+printf('Example 4.10\n\n');
+printf('Page No. 106\n\n');
+
+// given
+T1 = 150;// Surface temperature in degree celcius
+T2 = 20;// Ambient temperature in degree celcius
+d = 0.100; //Outside diametr of pipe in m
+h = 10;// Outside film coefficient in W/m^2-K
+t = 25*10^-3;// thickness of insulation in m
+K = 0.040;// Thermal conductivity of insulation in W/m-K
+
+r2 = d/2;//in m
+r1 = r2+t;// in m
+Q = ((T1-T2)/((1/(2*%pi*r1*h))+(log(r1/r2)/(2*%pi*K))));// in W/m
+printf('The heat loss per unit length is %.0f W/m',Q)
diff --git a/2471/CH4/EX4.2/Ex4_2.sce b/2471/CH4/EX4.2/Ex4_2.sce
new file mode 100755
index 000000000..9b91875f2
--- /dev/null
+++ b/2471/CH4/EX4.2/Ex4_2.sce
@@ -0,0 +1,17 @@
+clear ;
+clc;
+// Example 4.2
+printf('Example 4.2\n\n');
+printf('Page No. 89\n\n');
+// given
+K1 = 45// Thermal Conductivity of mild steel in W/m-K
+K2 = 0.040// Thermal Conductivity of insulaton in W/m-K
+L1 = 5*10^-3;// thickness of mild steel in metre
+L2 = 50*10^-3;// thickness of insulation in metre
+T1 = 100;// in degree celcius
+T2 = 25;// in degree celcius
+A = 1;// Area in m^2
+
+//By Fourier law of conduction
+Q = (((T1-T2)/((L1/(K1*A))+(L2/(K2*A)))))// in Watts
+printf('The rate of conductive heat transfer is %.0f W \n',Q)
diff --git a/2471/CH4/EX4.3/Ex4_3.sce b/2471/CH4/EX4.3/Ex4_3.sce
new file mode 100755
index 000000000..58b696245
--- /dev/null
+++ b/2471/CH4/EX4.3/Ex4_3.sce
@@ -0,0 +1,27 @@
+clear ;
+clc;
+// Example 4.3
+printf('Example 4.3\n\n');
+printf('Page No. 90\n\n');
+
+// given
+K1 = 26;// Thermal Conductivity of stainless steel in W/m-K
+K2 = 0.038;// Thermal Conductivity of insulaton in W/m-K
+L1 = 3*10^-3;// thickness of stainless steel in metre
+L2 = 40*10^-3;// thickness of insulation in metre
+T1 = 105;// in degree celcius
+T2 = 25;// in degree celcius
+L = 15;// Length of pipe in metre
+d1 = 50*10^-3;// Internal diameter of pipe in metre
+d2 = 56*10^-3;// External diameter of pipe in metre
+
+r1 = d1/2;// in metre
+r2 = d2/2;// in metre
+
+rm_p = ((r2-r1)/log(r2/r1));// logarithmic mean radius of pipe in m
+rm_i = (((r2+L2)-r2)/log((r2+L2)/r2));// logarithmic mean radius of insulation in m
+
+//By Fourier law of conduction
+Q = (((T1-T2)/((L1/(K1*2*%pi*rm_p))+(L2/(K2*2*%pi*rm_i)))));// in W/m
+Q_L = Q*L;
+printf('The rate of conductive heat transfer per 15 m length of pie is %3.2f W\n',Q_L)// Deviation in answer due to direct substitution
diff --git a/2471/CH4/EX4.4/Ex4_4.sce b/2471/CH4/EX4.4/Ex4_4.sce
new file mode 100755
index 000000000..c7848b2b2
--- /dev/null
+++ b/2471/CH4/EX4.4/Ex4_4.sce
@@ -0,0 +1,24 @@
+clear ;
+clc;
+// Example 4.4
+printf('Example 4.4\n\n');
+printf('Page No. 93\n\n');
+
+// given
+dH = 12*10^-3;// Outer diameter of pipe in m
+dC = 10*10^-3;// Inner diameter of pipe in m
+L = 1*10^-3;// im m
+h_H = 10*10^3;// Heat Transfer Coefficient on vapour side in W/m^2-K
+h_C = 4.5*10^3;// Heat Transfer Coefficient on vapour side in W/m^2-K
+K = 26;// Thermal Conductivity of metal in W/m-K
+dM = (dH + dC)/2;// mean diameter in m
+h_Hf = 6*10^3;// Fouling factor for hot side
+h_Cf = 6*10^3;// Fouling factor for cold side
+
+U = (1/h_H)+((L*dH)/(K*dM))+(dH/(dC*h_C));
+Uh = (1/U);// in W/m^2-K
+printf('The original heat transfer coefficient is %3.0f W/sq.m K \n',Uh )// Deviation in answer due to direct substitution
+
+u = (1/h_H)+(1/h_Hf)+((L*dH)/(K*dM))+(dH/(dC*h_C))+(dH/(dC*h_Cf));
+Uf = (1/u);// in W/m^2-K
+printf('The final heat transfer coefficient due to fouling is %3.0f W/m^2-K \n',ceil(Uf))
diff --git a/2471/CH4/EX4.5/Ex4_5.sce b/2471/CH4/EX4.5/Ex4_5.sce
new file mode 100755
index 000000000..641a3fbad
--- /dev/null
+++ b/2471/CH4/EX4.5/Ex4_5.sce
@@ -0,0 +1,32 @@
+clear ;
+clc;
+// Example 4.5
+printf('Example 4.5\n\n');
+printf('Page No. 95\n\n');
+
+// given
+m_h = 1.05;// Mass flow rate of hot liquid in kg/s
+Thi = 130;// Inlet Temperature of hot liquid in degree celcius
+Tho = 30;// Outlet Temperature of hot fluid in degree celcius
+Cph = 2.45*10^3;// Specific heat capacity of hot liquid in J/kg-K
+
+m_c = 4.10;// Mass flow rate of cold liquid in kg/s
+Tci = 20;// Inlet Temperature of cold liquid in degree celcius
+Cpc = 4.18*10^3;// Specific heat capacity of cold liquid in J/kg-K
+
+A = 6.8;// Area of heat exchanger in m^2
+Q = m_h*Cph*(Thi-Tho);// in Watts
+
+//From heat balance
+// m_c*Cpc*(Tci-Tco)= m_h*Cph*(Thi-Tho)= UAlTm = Q
+Tco = ((Q/(m_c*Cpc))+Tci);
+printf(' The Outlet Temperature of cold fluid is %.0f degree celcius\n',Tco)
+// As counter flow heat exchanger
+T1 = Thi-Tco;
+T2 = Tho-Tci;
+Tm = ((T1-T2)/log(T1/T2));
+
+U = (Q/(A*Tm));
+printf('The overall heat transfer coefficient is %.0f W/sq.m K \n',U)// Deviation in answer due to direct substitution
+
+
diff --git a/2471/CH4/EX4.6/Ex4_6.sce b/2471/CH4/EX4.6/Ex4_6.sce
new file mode 100755
index 000000000..ec8eda231
--- /dev/null
+++ b/2471/CH4/EX4.6/Ex4_6.sce
@@ -0,0 +1,24 @@
+clear ;
+clc;
+// Example 4.6
+printf('Example 4.6\n\n');
+printf('Page No. 98\n\n');
+
+// given
+v = 1.23;// velocity in m/s
+d = 25*10^-3;// diameter in m
+p = 980;// density in kg/m^3
+u = 0.502*10^-3;// viscosity in Ns/m^2
+Cp = 3.76*10^3;// Specific heat capacity in J/kg-K
+K = 0.532;// Thermal conductivity in W/m-K
+
+Re = (d*v*p)/u;//Reynolds Number
+Pr = (Cp*u)/K;// Prandtl Number
+Re_d = (Re)^0.8;
+Pr_d = (Pr)^0.4;
+
+// By Dittus-Boelter Equation
+//Nu = 0.0232 * Re^0.8 Pr^0.4 = (hd)/K
+Nu = 0.0232 * Re_d * Pr_d;// Nusselt Number
+h = (Nu*K)/d;//W/m^2-K
+printf('The film heat transfer coefficient is %3.2f W/sq.m K\n',h)// Deviation in answer due to direct substitution
diff --git a/2471/CH4/EX4.7/Ex4_7.sce b/2471/CH4/EX4.7/Ex4_7.sce
new file mode 100755
index 000000000..afe284398
--- /dev/null
+++ b/2471/CH4/EX4.7/Ex4_7.sce
@@ -0,0 +1,32 @@
+clear ;
+clc;
+// Example 4.7
+printf('Example 4.7\n\n');
+printf('Page No. 99\n\n');
+
+// (a) without insulation
+// given
+d_a = 0.150;// Diameter of pipe in m
+T1_a = 60;// Surface temperature in degree celcius
+T2_a = 10;// Ambient temperature in degree celcius
+
+//For laminar flow in pipe,h= 1.41*((T1-T2)/d)^0.25
+h_a = 1.41*((T1_a-T2_a)/d_a)^0.25;//W/m^2-K
+A_a = %pi * d_a;// Surface Area per unit length in m^2/m
+Q_a = h_a*A_a*(T1_a - T2_a);// in W/m
+printf('The heat loss per unit length without insulation is %.0f W/m \n',ceil(Q_a))
+
+// (b) with insulation
+// given
+d_b = 0.200;// Diameter of pipe in m
+T1_b = 20;// Surface temperature in degree celcius
+T2_b = 10;// Ambient temperature in degree celcius
+
+//For laminar flow in pipe,h= 1.41*((T1-T2)/d)^0.25
+h_b = 1.41*((T1_b-T2_b)/d_b)^0.25;//W/m^2-K
+A_b = %pi * d_b;// Surface Area per unit length in m^2/m
+Q_b = h_b*A_b*(T1_b - T2_b);// in W/m
+printf('the heat loss per unit length with insulation is %.1f W/m',Q_b)
+// Deviation in answer due to direct substitution
+
+
diff --git a/2471/CH4/EX4.8/Ex4_8.sce b/2471/CH4/EX4.8/Ex4_8.sce
new file mode 100755
index 000000000..418ccce06
--- /dev/null
+++ b/2471/CH4/EX4.8/Ex4_8.sce
@@ -0,0 +1,16 @@
+clear ;
+clc;
+// Example 4.8
+printf('Example 4.8\n\n');
+printf('Page No. 103\n\n');
+
+// given
+d = 0.100;// Diameter of pipe in m
+T1 = 383;// Surface temperature in Kelvin
+T2 = 288;// Surrounding air temperature in Kelvin
+e = 0.9;// Emissivity of pipe
+A = %pi * d;// Surface Area per unit length in m^2/m
+
+// By Stefan-Blotzmann law, the radiative heat transfer rate is Q = 5.669*e*A*((T1/100)^4-(T2/100)^4)
+Q = 5.669*e*A*((T1/100)^4-(T2/100)^4);// in W/m
+printf('The radiative heat loss per unit length is %.0f W/sq.m',ceil(Q))
diff --git a/2471/CH4/EX4.9/Ex4_9.sce b/2471/CH4/EX4.9/Ex4_9.sce
new file mode 100755
index 000000000..92657673d
--- /dev/null
+++ b/2471/CH4/EX4.9/Ex4_9.sce
@@ -0,0 +1,31 @@
+clear ;
+clc;
+// Example 4.9
+printf('Example 4.9\n\n');
+printf('Page No. 103\n\n');
+
+// given
+A = 1;// Area in m^2
+T1 = 423;// Surface temperature in Kelvin
+T2 = 293;// Surrounding air temperature in Kelvin
+T1_c = 150;// Surface temperature in degree celcius
+T2_c = 20;// Ambient temperature in degree celcius
+e = 0.9;// Emissivity of pipe
+
+//(a) Horizontal Pipe
+d = 0.100;// Diameter of pipe in m
+//For laminar flow in pipe,Q= (1.41*((T1-T2)/d)^0.25)*(T1-T2)
+Q_Ca = (1.41*((T1_c-T2_c)/d)^0.25)*(T1_c-T2_c);// Convective heat transfer rate in W/m^2
+// By Stefan-Blotzmann law, the radiative heat transfer rate is Q = 5.669*e*((T1/100)^4-(T2/100)^4)
+Q_Ra = 5.669*e*((T1/100)^4-(T2/100)^4);// in W/m^2
+Q_Ta = Q_Ra + Q_Ca;// IN W/m^2
+printf('The total heat loss from per square meter area is %.2f W/sq.m\n',Q_Ta)// Deviation in answer due to direct substitution
+
+
+//(b) Vertical Pipe
+//For turbulent flow in pipe,Q= (1.24*(T1-T2)^1.33)
+Q_Cb = (1.24*(T1-T2)^1.33);// Convective heat transfer rate in W/m^2
+// By Stefan-Blotzmann law, the radiative heat transfer rate is Q = 5.669*e*((T1/100)^4-(T2/100)^4)
+Q_Rb = 5.669*e*((T1/100)^4-(T2/100)^4);// in W/m^2
+Q_Tb = Q_Rb + Q_Cb;// IN W/m^2
+printf('The total heat loss from per square meter area is %.0f W/sq.m\n',floor(Q_Tb))