summaryrefslogtreecommitdiff
path: root/243
diff options
context:
space:
mode:
Diffstat (limited to '243')
-rwxr-xr-x243/CH1/EX1.01/1_01.sce4
-rwxr-xr-x243/CH10/EX10.1/10_01.sce14
-rwxr-xr-x243/CH10/EX10.2/10_02.sce18
-rwxr-xr-x243/CH10/EX10.3/10_03.sce19
-rwxr-xr-x243/CH10/EX10.4/10_4.sce20
-rwxr-xr-x243/CH10/EX10.5/10_5.sce18
-rwxr-xr-x243/CH11/EX11.1/11_01.sce16
-rwxr-xr-x243/CH11/EX11.2/11_02.sce16
-rwxr-xr-x243/CH11/EX11.3/11_03.sce21
-rwxr-xr-x243/CH11/EX11.4/11_04.sce13
-rwxr-xr-x243/CH11/EX11.5/11_05.sce24
-rwxr-xr-x243/CH11/EX11.6/11_06.sce12
-rwxr-xr-x243/CH11/EX11.7/11_07.sce23
-rwxr-xr-x243/CH11/EX11.8/11_08.sce21
-rwxr-xr-x243/CH12/EX12.1/12_01.sce29
-rwxr-xr-x243/CH12/EX12.10/12_10.sce19
-rwxr-xr-x243/CH12/EX12.2/12_02.sce29
-rwxr-xr-x243/CH12/EX12.3/12_03.sce23
-rwxr-xr-x243/CH12/EX12.4/12_04.sce28
-rwxr-xr-x243/CH12/EX12.5/12_05.sce24
-rwxr-xr-x243/CH12/EX12.6/12_06.sce12
-rwxr-xr-x243/CH12/EX12.7/12_07.sce27
-rwxr-xr-x243/CH12/EX12.8/12_08.sce10
-rwxr-xr-x243/CH12/EX12.9/12_09.sce18
-rwxr-xr-x243/CH13/EX13.1/13_01.sce11
-rwxr-xr-x243/CH13/EX13.10/13_10.sce29
-rwxr-xr-x243/CH13/EX13.11/13_11.sce27
-rwxr-xr-x243/CH13/EX13.12/13_12.sce21
-rwxr-xr-x243/CH13/EX13.13/13_13.sce23
-rwxr-xr-x243/CH13/EX13.14/13_14.sce20
-rwxr-xr-x243/CH13/EX13.2/13_02.sce20
-rwxr-xr-x243/CH13/EX13.3/13_03.sce21
-rwxr-xr-x243/CH13/EX13.4/13_04.sce22
-rwxr-xr-x243/CH13/EX13.5/13_05.sce24
-rwxr-xr-x243/CH13/EX13.6/13_06.sce30
-rwxr-xr-x243/CH13/EX13.7/13_07.sce13
-rwxr-xr-x243/CH13/EX13.8/13_08.sce20
-rwxr-xr-x243/CH13/EX13.9/13_09.sce19
-rwxr-xr-x243/CH14/EX14.1/14_01.sce48
-rwxr-xr-x243/CH14/EX14.2/14_02.sce22
-rwxr-xr-x243/CH14/EX14.3/14_03.sce16
-rwxr-xr-x243/CH14/EX14.4/14_04.sce20
-rwxr-xr-x243/CH14/EX14.5/14_05.sce13
-rwxr-xr-x243/CH14/EX14.6/14_06.sce13
-rwxr-xr-x243/CH15/EX15.1/15_01.sce27
-rwxr-xr-x243/CH15/EX15.2/15_02.sce24
-rwxr-xr-x243/CH15/EX15.3/15_03.sce25
-rwxr-xr-x243/CH15/EX15.4/15_04.sce14
-rwxr-xr-x243/CH15/EX15.5/15_05.sce19
-rwxr-xr-x243/CH15/EX15.6/15_06.sce24
-rwxr-xr-x243/CH15/EX15.7/15_07.sce25
-rwxr-xr-x243/CH3/EX3.1/3_01.sce22
-rwxr-xr-x243/CH3/EX3.10/3_10.sce29
-rwxr-xr-x243/CH3/EX3.11/3_11.sce11
-rwxr-xr-x243/CH3/EX3.12/3_12.sce13
-rwxr-xr-x243/CH3/EX3.13/3_13.sce28
-rwxr-xr-x243/CH3/EX3.14/3_14.sce28
-rwxr-xr-x243/CH3/EX3.15/3_15.sce21
-rwxr-xr-x243/CH3/EX3.16/3_16.sce17
-rwxr-xr-x243/CH3/EX3.17/3_17.sce18
-rwxr-xr-x243/CH3/EX3.18/3_18.sce28
-rwxr-xr-x243/CH3/EX3.19/3_19.sce17
-rwxr-xr-x243/CH3/EX3.2/3_02.sce17
-rwxr-xr-x243/CH3/EX3.20/3_20.sce18
-rwxr-xr-x243/CH3/EX3.21/3_21.sce20
-rwxr-xr-x243/CH3/EX3.22/3_22.sce67
-rwxr-xr-x243/CH3/EX3.23/3_23.sce10
-rwxr-xr-x243/CH3/EX3.24/3_24.sce37
-rwxr-xr-x243/CH3/EX3.3/3_03.sce25
-rwxr-xr-x243/CH3/EX3.4/3_04.sce8
-rwxr-xr-x243/CH3/EX3.5/3_05.sce33
-rwxr-xr-x243/CH3/EX3.6/3_06.sce31
-rwxr-xr-x243/CH3/EX3.7/3_07.sce40
-rwxr-xr-x243/CH3/EX3.8/3_08.sce14
-rwxr-xr-x243/CH3/EX3.9/3_09.sce28
-rwxr-xr-x243/CH4/EX4.1/4_01.sce22
-rwxr-xr-x243/CH4/EX4.10/4_10.sce14
-rwxr-xr-x243/CH4/EX4.11/4_11.sce28
-rwxr-xr-x243/CH4/EX4.12/4_12.sce36
-rwxr-xr-x243/CH4/EX4.13/4_13.sce4
-rwxr-xr-x243/CH4/EX4.14/4_14.sce13
-rwxr-xr-x243/CH4/EX4.15/4_15.sce14
-rwxr-xr-x243/CH4/EX4.16/4_16.sce17
-rwxr-xr-x243/CH4/EX4.17/4_17.sce4
-rwxr-xr-x243/CH4/EX4.18/4_18.sce22
-rwxr-xr-x243/CH4/EX4.19/4_19.sce4
-rwxr-xr-x243/CH4/EX4.2/4_02.sce43
-rwxr-xr-x243/CH4/EX4.20/4_20.sce4
-rwxr-xr-x243/CH4/EX4.21/4_21.sce17
-rwxr-xr-x243/CH4/EX4.3/4_03.sce29
-rwxr-xr-x243/CH4/EX4.4/4_04.sce22
-rwxr-xr-x243/CH4/EX4.5/4_05.sce17
-rwxr-xr-x243/CH4/EX4.6/4_06.sce17
-rwxr-xr-x243/CH4/EX4.7/4_07.sce15
-rwxr-xr-x243/CH4/EX4.8/4_08.sce9
-rwxr-xr-x243/CH4/EX4.9/4_09.sce16
-rwxr-xr-x243/CH6/EX6.02/6_02.sce4
-rwxr-xr-x243/CH6/EX6.06/6_06.sce4
-rwxr-xr-x243/CH6/EX6.1/6_01.sce16
-rwxr-xr-x243/CH6/EX6.10/6_10.sce4
-rwxr-xr-x243/CH6/EX6.11/6_11.sce28
-rwxr-xr-x243/CH6/EX6.12/6_12.sce30
-rwxr-xr-x243/CH6/EX6.13/6_13.sce16
-rwxr-xr-x243/CH6/EX6.14/6_14.sce29
-rwxr-xr-x243/CH6/EX6.15/6_15.sce12
-rwxr-xr-x243/CH6/EX6.16/6_16.sce32
-rwxr-xr-x243/CH6/EX6.17/6_17.sce39
-rwxr-xr-x243/CH6/EX6.3/6_03.sce16
-rwxr-xr-x243/CH6/EX6.4/6_04.sce41
-rwxr-xr-x243/CH6/EX6.5/6_05.sce23
-rwxr-xr-x243/CH6/EX6.7/6_07.sce22
-rwxr-xr-x243/CH6/EX6.8/6_08.sce19
-rwxr-xr-x243/CH6/EX6.9/6_09.sce20
-rwxr-xr-x243/CH7/EX7.1/7_01.sce18
-rwxr-xr-x243/CH7/EX7.2/7_02.sce18
-rwxr-xr-x243/CH7/EX7.3/7_03.sce31
-rwxr-xr-x243/CH7/EX7.4/7_04.sce21
-rwxr-xr-x243/CH7/EX7.5/7_05.sce59
-rwxr-xr-x243/CH7/EX7.6/7_06.sce27
-rwxr-xr-x243/CH7/EX7.7/7_07.sce17
-rwxr-xr-x243/CH8/EX8.1/8_01.sce28
-rwxr-xr-x243/CH8/EX8.2/8_02.sce27
-rwxr-xr-x243/CH8/EX8.3/8_03.sce40
-rwxr-xr-x243/CH8/EX8.4/8_04.sce23
-rwxr-xr-x243/CH9/EX9.1/9_01.sce14
-rwxr-xr-x243/CH9/EX9.10/9_10.sce56
-rwxr-xr-x243/CH9/EX9.11/9_11.sce28
-rwxr-xr-x243/CH9/EX9.12/9_12.sce36
-rwxr-xr-x243/CH9/EX9.2/9_02.sce13
-rwxr-xr-x243/CH9/EX9.3/9_03.sce26
-rwxr-xr-x243/CH9/EX9.4/9_04.sce32
-rwxr-xr-x243/CH9/EX9.5/9_05.sce34
-rwxr-xr-x243/CH9/EX9.6/9_06.sce25
-rwxr-xr-x243/CH9/EX9.7/9_07.sce24
-rwxr-xr-x243/CH9/EX9.8/9_08.sce24
-rwxr-xr-x243/CH9/EX9.9/9_09.sce24
136 files changed, 2995 insertions, 0 deletions
diff --git a/243/CH1/EX1.01/1_01.sce b/243/CH1/EX1.01/1_01.sce
new file mode 100755
index 000000000..950ef5cda
--- /dev/null
+++ b/243/CH1/EX1.01/1_01.sce
@@ -0,0 +1,4 @@
+//Example No. 1_01
+//Pg No. 6
+disp('Theoritical Problem')
+disp('For Details go to page no. 6') \ No newline at end of file
diff --git a/243/CH10/EX10.1/10_01.sce b/243/CH10/EX10.1/10_01.sce
new file mode 100755
index 000000000..671b56567
--- /dev/null
+++ b/243/CH10/EX10.1/10_01.sce
@@ -0,0 +1,14 @@
+//Example No. 10_01
+//Fitting a Straight Line
+//Pg No. 326
+clear ;close ;clc ;
+
+x = poly(0,'x')
+X = 1:5
+Y = [ 3 4 5 6 8 ];
+n = length(X);
+b = ( n*sum(X.*Y) - sum(X)*sum(Y) )/( n*sum(X.*X) - (sum(X))^2 )
+a = sum(Y)/n - b*sum(X)/n
+disp(b,'b = ')
+disp(a,'a = ')
+y = a + b*x
diff --git a/243/CH10/EX10.2/10_02.sce b/243/CH10/EX10.2/10_02.sce
new file mode 100755
index 000000000..72fd3e45c
--- /dev/null
+++ b/243/CH10/EX10.2/10_02.sce
@@ -0,0 +1,18 @@
+//Example No. 10_02
+//Fitting a Power-Function model to given data
+//Pg No. 331
+clear ;close ;clc ;
+
+x = poly(0,'x');
+X = 1:5
+Y = [ 0.5 2 4.5 8 12.5 ]
+Xnew = log(X)
+Ynew = log(Y)
+n = length(Xnew)
+b = ( n*sum(Xnew.*Ynew) - sum(Xnew)*sum(Ynew) )/( n*sum(Xnew.*Xnew) - ( sum(Xnew) )^2 )
+lna = sum(Ynew)/n - b*sum(Xnew)/n
+a = exp(lna)
+disp(b,'b = ')
+disp(lna,'lna = ')
+disp(a,'a = ')
+printf('\n The power function equation obtained is \n y = %.4Gx^%.4G',a,b);
diff --git a/243/CH10/EX10.3/10_03.sce b/243/CH10/EX10.3/10_03.sce
new file mode 100755
index 000000000..f67c21414
--- /dev/null
+++ b/243/CH10/EX10.3/10_03.sce
@@ -0,0 +1,19 @@
+//Example No. 10_03
+//Pg No. 332
+clear ;close ;clc ;
+
+time = 1:4
+T = [ 70 83 100 124 ]
+t = 6
+Fx = exp(time/4)
+n = length(Fx)
+Y = T ;
+b = ( n*sum(Fx.*Y) - sum(Fx)*sum(Y) )/( n*sum(Fx.*Fx) - (sum(Fx))^2 )
+a = sum(Y)/n - b*sum(Fx)/n
+disp(b,'b = ')
+disp(a,'a = ')
+printf('The relationship between T and t is \n T = %.4G*e^(t/4) + %.4G \n',b,a)
+deff('T = T(t)','T = b*exp(t/4) + a ')
+T_6 = T(6)
+
+disp(T_6,'The temperature at t = 6 is') \ No newline at end of file
diff --git a/243/CH10/EX10.4/10_4.sce b/243/CH10/EX10.4/10_4.sce
new file mode 100755
index 000000000..67f00469f
--- /dev/null
+++ b/243/CH10/EX10.4/10_4.sce
@@ -0,0 +1,20 @@
+//Example No. 10_04
+//Curve Fitting
+//Pg NO. 335
+clear ; close ; clc ;
+
+x = 1:4 ;
+y = [6 11 18 27 ];
+n = length(x) //Number of data points
+m = 2+1 //Number of unknowns
+disp('Using CA = B form , we get')
+for j = 1:m
+ for k = 1:m
+ C(j,k) = sum(x.^(j+k-2))
+ end
+ B(j) = sum( y.*( x.^( j-1 ) ) )
+end
+disp(B,'B = ',C,'C = ')
+A = inv(C)*B
+disp(A,'A = ')
+printf('Therefore the least sqaures polynomial is\n y = %i + %i*x + %i*x^2 \n',A(1),A(2),A(3)) \ No newline at end of file
diff --git a/243/CH10/EX10.5/10_5.sce b/243/CH10/EX10.5/10_5.sce
new file mode 100755
index 000000000..578cc3880
--- /dev/null
+++ b/243/CH10/EX10.5/10_5.sce
@@ -0,0 +1,18 @@
+//Example No. 10_05
+//Plane Fitting
+//Pg No. 342
+clear ; close ; clc ;
+
+x = 1:4
+z = 0:3
+y = 12:6:30
+n = length(x) //Number of data points
+m = 3 //Number of unknowns
+G = [ ones(1,n) ; x ; z]
+H = G'
+C = G*H
+B = y*H
+D = C\B'
+disp(C,B)
+disp(D)
+mprintf('\n The regression plane is \n y = %i + %f*x + %i*z ',D(1),D(2),D(3)) \ No newline at end of file
diff --git a/243/CH11/EX11.1/11_01.sce b/243/CH11/EX11.1/11_01.sce
new file mode 100755
index 000000000..6caabe4c7
--- /dev/null
+++ b/243/CH11/EX11.1/11_01.sce
@@ -0,0 +1,16 @@
+//Example No. 11_01
+//First order forward difference
+//Pg No. 348
+clear ;close ;clc ;
+
+x = poly(0,"x");
+deff('F = f(x)','F = x^2');
+deff('DF = df(x,h)','DF = (f(x+h)-f(x))/h');
+dfactual = derivat(f(x));
+h = [0.2 ; 0.1 ; 0.05 ; 0.01 ]
+for i = 1:4
+ y(i) = df(1,h(i));
+ err(i) = y(i) - horner(dfactual,1)
+end
+table = [h y err];
+disp(table)
diff --git a/243/CH11/EX11.2/11_02.sce b/243/CH11/EX11.2/11_02.sce
new file mode 100755
index 000000000..c27d0786d
--- /dev/null
+++ b/243/CH11/EX11.2/11_02.sce
@@ -0,0 +1,16 @@
+//Example No. 11_02
+//Three-Point Formula
+//Pg No. 350
+clear ;close ;clc ;
+
+x = poly(0,"x");
+deff('F = f(x)','F = x^2');
+deff('DF = df(x,h)','DF = (f(x+h)-f(x-h))/(2*h)');
+dfactual = derivat(f(x));
+h = [0.2 ; 0.1 ; 0.05 ; 0.01 ]
+for i = 1:4
+ y(i) = df(1,h(i));
+ err(i) = y(i) - horner(dfactual,1)
+end
+table = [h y err];
+disp(table) \ No newline at end of file
diff --git a/243/CH11/EX11.3/11_03.sce b/243/CH11/EX11.3/11_03.sce
new file mode 100755
index 000000000..08da4ffd2
--- /dev/null
+++ b/243/CH11/EX11.3/11_03.sce
@@ -0,0 +1,21 @@
+//Example No. 11_03
+//Pg No. 353
+close ;clear ;clc ;
+
+x = 0.45;
+deff('F = f(x)','F = sin(x)');
+deff('DF = df(x,h)','DF = (f(x+h) - f(x))/h');
+dfactual = cos(x);
+h = 0.01:0.005:0.04;
+n = length(h);
+for i = 1:n
+ y(i) = df(x,h(i))
+ err(i) = y(i) - dfactual ;
+end
+table = [ h' y err];
+disp(table)
+//scilab uses 16 significant digits so the bound for roundoff error is 0.5*10^(-16)
+e = 0.5*10^(-16)
+M2 = max(sin(x+h));
+hopt = 2*sqrt(e/M2);
+disp(hopt,'hopt = ',M2,'M2 = ') \ No newline at end of file
diff --git a/243/CH11/EX11.4/11_04.sce b/243/CH11/EX11.4/11_04.sce
new file mode 100755
index 000000000..1120397c6
--- /dev/null
+++ b/243/CH11/EX11.4/11_04.sce
@@ -0,0 +1,13 @@
+//Example No. 11_04
+//Approximate second derivative
+//Pg No. 354
+clear ;close ;clc ;
+
+x = 0.75;
+h = 0.01;
+deff('F = f(x)','F = cos(x)');
+deff('D2F = d2f(x,h)','D2F = ( f(x+h) - 2*f(x) + f(x-h) )/h^2 ');
+y = d2f(0.75,0.01);
+d2fexact = -cos(0.75)
+err = d2fexact - y ;
+disp(err,'err = ',d2fexact,'d2fexact = ',y,'y = ') \ No newline at end of file
diff --git a/243/CH11/EX11.5/11_05.sce b/243/CH11/EX11.5/11_05.sce
new file mode 100755
index 000000000..ef0eb6beb
--- /dev/null
+++ b/243/CH11/EX11.5/11_05.sce
@@ -0,0 +1,24 @@
+//Example No. 11_05
+//Differentiation of tabulated data
+//Pg No. 358
+clear ;close ;clc ;
+
+T = 5:9 ;
+s = [10 14.5 19.5 25.5 32 ];
+h = T(2)-T(1);
+n = length(T)
+function V = v(t)
+ if find(T == t) == 1 then
+ V = [ -3*s( find(T == t) ) + 4*s( find(T==(t+h)) ) - s( find( T == (t+2*h) ) ) ]/(2*h) //Three point forward difference formula
+ elseif find(T == t) == n
+ V = [ 3*s( find(T == t) ) - 4*s( find(T==(t-h)) ) + s( find( T == (t-2*h) ) ) ]/(2*h) //Backward difference formula
+ else
+ V = [ s( find(T == (t+h)) ) - s( find(T == (t-h)) ) ]/(2*h) //Central difference formula
+ end
+endfunction
+
+v_5 = v(5)
+v_7 = v(7)
+v_9 = v(9)
+
+disp(v_9,'v(9) = ',v_7,'v(7) = ',v_5,'v(5) = ') \ No newline at end of file
diff --git a/243/CH11/EX11.6/11_06.sce b/243/CH11/EX11.6/11_06.sce
new file mode 100755
index 000000000..67fe0383b
--- /dev/null
+++ b/243/CH11/EX11.6/11_06.sce
@@ -0,0 +1,12 @@
+//Example No. 11_06
+//Three Point Central Difference formula
+//Pg No. 359
+clear ;close ;clc ;
+
+T = 5:9 ;
+s = [10 14.5 19.5 25.5 32 ];
+h = T(2)-T(1);
+deff('A = a(t)','A = [ s( find( T == (t+h) ) ) - 2*s( find( T == t) ) + s( find( T == (t-h) ) ) ]/h^2')
+a_7 = a(7)
+
+disp(a_7,'a(7) = ') \ No newline at end of file
diff --git a/243/CH11/EX11.7/11_07.sce b/243/CH11/EX11.7/11_07.sce
new file mode 100755
index 000000000..06a4e5a1e
--- /dev/null
+++ b/243/CH11/EX11.7/11_07.sce
@@ -0,0 +1,23 @@
+//Example No. 11_7
+//Pg No. 359
+clear ; close ; clc ;
+
+h = 0.25 ;
+//y''(x) = e^(x^2)
+//y(0) = 0 , y(1) = 0
+// y''(x) = y(x+h) - 2*y(x) + y(x-h)/h^2 = e^(x^2)
+//( y(x + 0.25) - 2*y(x) + y(x-0.25) )/0.0625 = e^(x^2)
+//y(x+0.25) - 2*y(x) + y(x - 0.25) = 0.0624*e^(x^2)
+//y(0.5) - 2*y(0.25) + y(0) = 0.0665
+//y(0.75) - 2*y(0.5) + y(0.25) = 0.0803
+//y(1) - 2*y(0.75) + y(0.5) = 0.1097
+//given y(0) = y(1) = 0
+//
+//0 + y2 - 2y1 = 0.06665
+//y3 - 2*y2 + y1 = 0.0803
+//-2*y3 + y2 + 0 = 0.1097
+//Therefore
+A = [0 1 -2 ; 1 -2 1 ; -2 1 0 ]
+B = [ 0.06665 ; 0.0803 ; 0.1097 ]
+C = A\B
+mprintf('solving the above equations we get \n\n y1 = y(0.25) = %f \n y2 = y(0.5) = %f \n y3 = y(0.75) = %f \n ',C(3),C(2),C(1)) \ No newline at end of file
diff --git a/243/CH11/EX11.8/11_08.sce b/243/CH11/EX11.8/11_08.sce
new file mode 100755
index 000000000..eb3a77869
--- /dev/null
+++ b/243/CH11/EX11.8/11_08.sce
@@ -0,0 +1,21 @@
+//Example No. 9_01
+//Richardson's Extrapolation Technique
+//Pg No. 362
+clear ;close ;clc ;
+
+x = -0.5:0.25:1.5
+h = 0.5 ;
+r = 1/2 ;
+
+deff('F = f(x)','F = exp(x)');
+deff('D = D(x,h)' ,'D = [ f(x + h) - f(x-h) ]/(2*h) ' );
+deff('df = df(x,h,r)','df = [D(x,r*h) - r^2*D(x,h)]/(1-r^2)');
+
+df_05 = df(0.5,0.5,1/2);
+disp(df_05,'richardsons technique - df(0.5) = ',D(0.5,0.25),'D(rh) = D(0.25) = ',D(0.5,0.5),'D(0.5) = ')
+dfexact = derivative(f,0.5)
+disp(dfexact,'Exact df(0.5) = ')
+disp('The result by richardsons technique is much better than other results')
+
+//r = 2
+disp(df(0.5,0.5,2),'df(x) = ',D(0.5,2*0.5),'D(rh) = ','for r = 2') \ No newline at end of file
diff --git a/243/CH12/EX12.1/12_01.sce b/243/CH12/EX12.1/12_01.sce
new file mode 100755
index 000000000..215443ee7
--- /dev/null
+++ b/243/CH12/EX12.1/12_01.sce
@@ -0,0 +1,29 @@
+//Example No. 12_01
+//Trapezoidal Rule
+//Pg No. 373
+clear ;close ;clc ;
+
+x = poly(0,"x");
+deff('F = f(x)','F = x^3 + 1');
+
+//case(a)
+a = 1;
+b = 2 ;
+h = b - a ;
+It = (b-a)*(f(a)+f(b))/2
+d2f = derivat(derivat( f(x) ))
+Ett = h^3*horner(d2f,2)/12
+Iexact = intg(1,2,f)
+Trueerror = It - Iexact
+disp(Trueerror,'True error = ',Iexact,'Iexact = ',Ett,'Ett = ',It,'It = ','case(a)')
+disp('Here Error bound is an overestimate of true error')
+
+//case(b)
+a = 1;
+b = 1.5 ;
+h = b - a ;
+It = (b-a)*(f(a)+f(b))/2
+Ett = h^3*horner(d2f,1.5)/12
+Iexact = intg(1,1.5,f)
+Trueerror = It - Iexact
+disp(Trueerror,'True error = ',Iexact,'Iexact = ',Ett,'Ett = ',It,'It = ','case(b)') \ No newline at end of file
diff --git a/243/CH12/EX12.10/12_10.sce b/243/CH12/EX12.10/12_10.sce
new file mode 100755
index 000000000..34b0ae14a
--- /dev/null
+++ b/243/CH12/EX12.10/12_10.sce
@@ -0,0 +1,19 @@
+//Example No. 9_01
+//Gauss-Legendre Three-point formula
+//Pg No. 400
+clear ;close ;clc ;
+
+a = 2 ;
+b = 4 ;
+A = (b-a)/2
+B = (b+a)/2
+C = (b-a)/2
+deff('G = g(z)','G = (A*z + B)^4 + 1')
+w1 = 0.55556 ;
+w2 = 0.88889 ;
+w3 = 0.55556 ;
+z1 = -0.77460;
+z2 = 0 ;
+z3 = 0.77460 ;
+Ig = C*( w1*g(z1) + w2*g(z2) + w3*g(z3) )
+printf('g(z) = (%f*z + %f)^4 + 1 \n C = %f \n Ig = %f \n',A,B,C,Ig) \ No newline at end of file
diff --git a/243/CH12/EX12.2/12_02.sce b/243/CH12/EX12.2/12_02.sce
new file mode 100755
index 000000000..56e7eb842
--- /dev/null
+++ b/243/CH12/EX12.2/12_02.sce
@@ -0,0 +1,29 @@
+//Example No. 12_02
+//Tapezoidal rule
+//Pg No. 376
+clear ;close ;clc ;
+
+deff('F = f(x)','F = exp(x)');
+a = -1 ;
+b = 1 ;
+
+//case(a)
+n = 2
+h = (b-a)/n
+I = 0
+for i = 1:n
+ I = I + f(a+(i-1)*h)+f(a+i*h);
+end
+I = h*I/2 ;
+disp(I,'intergral for case(a),Ia = ')
+
+//case(b)
+n = 4
+h = (b-a)/n
+I = 0
+for i = 1:n
+ I = I + f(a+(i-1)*h)+f(a+i*h);
+end
+I = h*I/2 ;
+Iexact = 2.35040
+disp('n = 4 case is better than n = 2 case',Iexact,'exact integral,Iexact = ',I,'intergral for case(b),Ib = ') \ No newline at end of file
diff --git a/243/CH12/EX12.3/12_03.sce b/243/CH12/EX12.3/12_03.sce
new file mode 100755
index 000000000..4898ba560
--- /dev/null
+++ b/243/CH12/EX12.3/12_03.sce
@@ -0,0 +1,23 @@
+//Example No. 12_03
+//Simpon's 1/3 rule
+//Pg No. 381
+clear ;close ;clc ;
+
+funcprot(0) //To avoid warning message for defining function f(x) twice
+//case(a)
+deff('F = f(x)','F = exp(x)');
+a = -1;
+b = 1;
+h = (b-a)/2
+x1 = a+h
+Is1 = h*( f(a) + f(b) + 4*f(x1) )/3
+disp(Is1,'Integral for case(a) , Is1 = ',h,'h = ')
+
+//case(b)
+deff('F = f(x)','F = sqrt(sin(x))');
+a = 0
+b = %pi/2
+h = (b-a)/2
+x1 = a+h
+Is1 = h*( f(a) + f(b) + 4*f(x1) )/3
+disp(Is1,'Integral for case(b),Is1 = ',h,'h = ') \ No newline at end of file
diff --git a/243/CH12/EX12.4/12_04.sce b/243/CH12/EX12.4/12_04.sce
new file mode 100755
index 000000000..b38a5bb83
--- /dev/null
+++ b/243/CH12/EX12.4/12_04.sce
@@ -0,0 +1,28 @@
+//Example No. 12_04
+//Simpon's 1/3 rule
+//Pg No.382
+clear ;close ;clc ;
+
+deff('F = f(x)','F = sqrt( sin(x) )');
+x0 = 0 ;
+xa = %pi/2 ;
+
+//case(a) n = 4
+n = 4 ;
+h = ( xa-x0 )/n
+I = 0
+for i = 1:n/2
+ I = I + f(x0 + (2*i-2)*h) + 4*f(x0 + (2*i-1)*h) + f(x0 + 2*i*h) ;
+end
+I = h*I/3
+disp(I,'Integral value for n = 4 is',h,'h = ')
+
+//case(b) n = 6
+n = 6
+h = ( xa-x0 )/n
+I = 0
+for i = 1:n/2
+ I = I + f(x0 + (2*i-2)*h) + 4*f(x0 + (2*i-1)*h) + f(x0 + 2*i*h) ;
+end
+I = h*I/3
+disp(I,'Integral value for n = 6 is',h,'h = ') \ No newline at end of file
diff --git a/243/CH12/EX12.5/12_05.sce b/243/CH12/EX12.5/12_05.sce
new file mode 100755
index 000000000..4e976faf2
--- /dev/null
+++ b/243/CH12/EX12.5/12_05.sce
@@ -0,0 +1,24 @@
+//Example No. 12_05
+//Simpson's 3/8 rule
+//Pg No. 386
+clear ;close ;clc ;
+
+funcprot(0)
+//case(a)
+deff('F = f(x)','F = x^3 + 1');
+a = 1 ;
+b = 2 ;
+h = (b-a)/3
+x1 = a + h
+x2 = a + 2*h
+Is2 = 3*h*( f(a) + 3*f(x1) + 3*f(x2) + f(b) )/8 ;
+disp(Is2,'Integral of x^3 +1 from 1 to 2 is')
+//case(b)
+deff('F = f(x)','F = sqrt( sin(x) )');
+a = 0 ;
+b = %pi/2 ;
+h = (b-a)/3
+x1 = a + h
+x2 = a + 2*h
+Is2 = 3*h*( f(a) + 3*f(x1) + 3*f(x2) + f(b) )/8 ;
+disp(Is2,'Integral of sqrt(sin(x)) from 0 to %pi/2 is') \ No newline at end of file
diff --git a/243/CH12/EX12.6/12_06.sce b/243/CH12/EX12.6/12_06.sce
new file mode 100755
index 000000000..f85e7e443
--- /dev/null
+++ b/243/CH12/EX12.6/12_06.sce
@@ -0,0 +1,12 @@
+//Example No. 12_06
+//Booles's Five-Point formula
+//Pg No. 387
+clear ;close ;clc ;
+
+deff('F = f(x)','F = sqrt( sin(x) )')
+x0 = 0;
+xb = %pi/2 ;
+n = 4 ;
+h = (xb - x0)/n
+Ib = 2*h*(7*f(x0) + 32*f(x0+h) + 12*f(x0 + 2*h) + 32*f(x0+3*h) + 7*f(x0+4*h))/45;
+disp(Ib,'Ib = ') \ No newline at end of file
diff --git a/243/CH12/EX12.7/12_07.sce b/243/CH12/EX12.7/12_07.sce
new file mode 100755
index 000000000..c4aa8ab78
--- /dev/null
+++ b/243/CH12/EX12.7/12_07.sce
@@ -0,0 +1,27 @@
+//Example No. 12_07
+//Romberg Integration formula
+//Pg No. 391
+clear ;close ;clc ;
+
+deff('F = f(x)','F = 1/x');
+//since we can't have (0,0) element in matrix we start with (1,1)
+a = 1 ;
+b = 2 ;
+h = b-a ;
+R(1,1) = h*(f(a)+f(b))/2
+disp(R(1,1),'R(0,0) = ')
+for i = 2:3
+ h(i) = (b-a)/2^(i-1)
+ s = 0
+ for k = 1:2^(i-2)
+ s = s + f(a + (2*k - 1)*h(i));
+ end
+ R(i,1) = R(i-1,1)/2 + h(i)*s;
+ printf('\nR(%i,0) = %f \n',i-1,R(i,1))
+end
+for j = 2:3
+ for i = j:3
+ R(i,j) = (4^(j-1)*R(i,j-1) - R(i-1,j-1))/(4^(j-1)-1);
+ printf('\nR(%i,%i) = %f \n',i-1,j-1,R(i,j))
+ end
+end \ No newline at end of file
diff --git a/243/CH12/EX12.8/12_08.sce b/243/CH12/EX12.8/12_08.sce
new file mode 100755
index 000000000..cc5daf5a7
--- /dev/null
+++ b/243/CH12/EX12.8/12_08.sce
@@ -0,0 +1,10 @@
+//Example No. 12_08
+//Two Point Gauss -Legedre formula
+//Pg No. 397
+clear ;close ;clc ;
+
+deff('F = f(x)','F = exp(x)');
+x1 = -1/sqrt(3)
+x2 = 1/sqrt(3)
+I = f(x1) + f(x2)
+disp(I,'I = ',x2,'x2 = ',x1,'x1 = ') \ No newline at end of file
diff --git a/243/CH12/EX12.9/12_09.sce b/243/CH12/EX12.9/12_09.sce
new file mode 100755
index 000000000..6dd5ca9d9
--- /dev/null
+++ b/243/CH12/EX12.9/12_09.sce
@@ -0,0 +1,18 @@
+//Example No. 12_09
+//Gaussian two point formula
+//Pg No. 398
+clear ;close ;clc ;
+
+a = -2 ;
+b = 2 ;
+deff('F = f(x)','F = exp(-x/2)')
+A = (b-a)/2
+B = (a+b)/2
+C = (b-a)/2
+deff('G = g(z)','G = exp(-1*(A*z+B)/2)')
+w1 = 1 ;
+w2 = 1 ;
+z1 = -1/sqrt(3)
+z2 = 1/sqrt(3)
+Ig = C*( w1*g(z1) + w2*g(z2) )
+printf('g(z) = exp(-(%f*z + %f)/2) \n C = %f \n Ig = %f \n',A,B,C,Ig) \ No newline at end of file
diff --git a/243/CH13/EX13.1/13_01.sce b/243/CH13/EX13.1/13_01.sce
new file mode 100755
index 000000000..c83affe58
--- /dev/null
+++ b/243/CH13/EX13.1/13_01.sce
@@ -0,0 +1,11 @@
+//Example No. 13_01
+//Taylor method
+//Pg No. 414
+clear ; close ; clc ;
+
+deff('F = f(x,y)','F = x^2 + y^2')
+deff('D2Y = d2y(x,y)','D2Y = 2*x + 2*y*f(x,y)');
+deff('D3Y = d3y(x,y)','D3Y = 2 + 2*y*d2y(x,y) + 2*f(x,y)^2');
+deff('Y = y(x)','Y = 1 + f(0,1)*x + d2y(0,1)*x^2/2 + d3y(0,1)*x^3/6');
+disp(y(0.25),'y(0.25) = ')
+disp(y(0.5),'y(0.5) = ') \ No newline at end of file
diff --git a/243/CH13/EX13.10/13_10.sce b/243/CH13/EX13.10/13_10.sce
new file mode 100755
index 000000000..a5ab207a8
--- /dev/null
+++ b/243/CH13/EX13.10/13_10.sce
@@ -0,0 +1,29 @@
+//Example No. 13_10
+//Milne-Simpson Predictor-Corrector method
+//Pg NO. 446
+clear;close;clc;
+
+deff('F = f(x,y)','F = 2*y/x')
+x0 = 1 ;
+y0 = 2 ;
+h = 0.25 ;
+//Assuming y1 ,y2 and y3(required for milne-simpson formula) are estimated using Fourth- order Runge kutta method
+x1 = x0 + h
+y1 = 3.13 ;
+x2 = x1 + h
+y2 = 4.5 ;
+x3 = x2 + h
+y3 = 6.13 ;
+//Milne Predictor formula
+yp4 = y0 + 4*h*(2*f(x1,y1) - f(x2,y2) + 2*f(x3,y3))/3
+x4 = x3 + h
+fp4 = f(x4,yp4) ;
+disp(fp4,'fp4 = ',yp4,'yp4 = ')
+//Simpson Corrector formula
+yc4 = y2 + h*( f(x2,y2) + 4*f(x3,y3) + fp4)/3
+f4 = f(x4,yc4)
+disp(f4,'f4 = ',yc4,'yc4 = ')
+
+yc4 = y2 + h*( f(x2,y2) + 4*f(x3,y3) + f4)/3
+disp(yc4 ,'yc4 = ')
+disp('Note- the exact solution is y(2) = 8') \ No newline at end of file
diff --git a/243/CH13/EX13.11/13_11.sce b/243/CH13/EX13.11/13_11.sce
new file mode 100755
index 000000000..6903b09a7
--- /dev/null
+++ b/243/CH13/EX13.11/13_11.sce
@@ -0,0 +1,27 @@
+//Example No. 13_11
+//Adams-Bashforth-Moulton Method
+//Pg NO. 446
+clear;close;clc;
+
+deff('F = f(x,y)','F = 2*y/x')
+x0 = 1 ;
+y0 = 2 ;
+h = 0.25 ;
+x1 = x0 + h
+y1 = 3.13 ;
+x2 = x1 + h
+y2 = 4.5 ;
+x3 = x2 + h
+y3 = 6.13 ;
+//Adams Predictor formula
+yp4 = y3 + h*(55*f(x3,y3) - 59*f(x2,y2) + 37*f(x1,y1) - 9*f(x0,y0))/24
+x4 = x3 + h
+fp4 = f(x4,yp4)
+disp(fp4,'fp4 = ',yp4,'yp4 = ','Adams Predictor formula')
+//Adams Corrector formula
+yc4 = y3 + h*( f(x1,y1) - 5*f(x2,y2) + 19*f(x3,y3) + 9*fp4 )/24
+f4 = f(x4,yc4)
+disp(f4,'f4 = ',yc4,'yc4 = ','Adams Corrector formula')
+
+yc4 = y3 + h*( f(x1,y1) - 5*f(x2,y2) + 19*f(x3,y3) + 9*f4 )/24
+disp(yc4 ,'refined-yc4 = ') \ No newline at end of file
diff --git a/243/CH13/EX13.12/13_12.sce b/243/CH13/EX13.12/13_12.sce
new file mode 100755
index 000000000..22cb04766
--- /dev/null
+++ b/243/CH13/EX13.12/13_12.sce
@@ -0,0 +1,21 @@
+//Example No. 13_12
+//Milne-Simpson Method using modifier
+//Pg No. 453
+clear ; close ; clc ;
+
+deff('F = f(y)','F = -y^2 ')
+x = [ 1 ; 1.2 ; 1.4 ; 1.6 ] ;
+y = [ 1 ; 0.8333333 ; 0.7142857 ; 0.625 ] ;
+h = 0.2 ;
+
+for i = 1:2
+ yp = y(i) + 4*h*( 2*f( y(i+1) ) - f( y(i+2) ) + 2*f( y(i+3) ) )/3
+ fp = f(yp) ;
+ yc = y( i+2) + h*(f( y(i+2) ) + 4*f( y(i+3) ) + fp )/3 ;
+ Etc = -(yc - yp)/29
+ y(i+4) = yc + Etc
+ mprintf('\n y%ip = %f\n f%ip = %f \n y%ic = %f \n Modifier Etc = %f \n Modified y%ic = %f \n',i+3,yp,i+3,fp,i+3,yc,Etc,i+3,y(i+4))
+end
+exactanswer = 0.5 ;
+err = exactanswer - y(6) ;
+disp(err,'error = ') \ No newline at end of file
diff --git a/243/CH13/EX13.13/13_13.sce b/243/CH13/EX13.13/13_13.sce
new file mode 100755
index 000000000..0ac75a289
--- /dev/null
+++ b/243/CH13/EX13.13/13_13.sce
@@ -0,0 +1,23 @@
+//Example No. 13_13
+//System of differetial Equations
+//Pg No. 455
+clear ; close ; clc ;
+
+deff('F1 = f1(x,y1,y2)','F1 = x + y1 + y2 ')
+deff('F2 = f2(x,y1,y2)','F2 = 1 + y1 + y2 ')
+
+x0 = 0 ;
+y10 = 1 ;
+y20 = -1 ;
+h = 0.1 ;
+m1(1) = f1( x0 , y10 , y20 )
+m1(2) = f2( x0 , y10 , y20 )
+m2(1) = f1( x0+h , y10 + h*m1(1) , y20 + h*m1(2) )
+m2(2) = f2( x0+h , y10 + h*m1(1) , y20 + h*m1(2) )
+m(1) = (m1(1) + m2(1))/2
+m(2) = (m1(2) + m2(2))/2
+
+y1_0_1 = y10 + h*m(1)
+y2_0_1 = y20 + h*m(2)
+
+mprintf('m1(1) = %f\n m1(2) = %f\n m2(1) = %f\n m2(2) = %f\n m(1) = %f\n m(2) = %f\n y1(0.1) = %f\n y2(0.1) = %f\n',m1(1),m1(2),m2(1),m2(2),m(1),m(2),y1_0_1,y2_0_1) \ No newline at end of file
diff --git a/243/CH13/EX13.14/13_14.sce b/243/CH13/EX13.14/13_14.sce
new file mode 100755
index 000000000..e94b860d7
--- /dev/null
+++ b/243/CH13/EX13.14/13_14.sce
@@ -0,0 +1,20 @@
+//Example No. 13_14
+//Higher Order Differential Equations
+//Pg No. 457
+clear ; close ; clc ;
+
+x0 = 0
+y10 = 0
+y20 = 1
+h = 0.2
+m1(1) = y20 ;
+m1(2) = 6*x0 + 3*y10 - 2*y20
+m2(1) = y20 + h*m1(2)
+m2(2) = 6*(x0+h) + 3*(y10 + h*m1(1)) - 2*(y20 + h*m1(2))
+m(1) = (m1(1) + m2(1))/2
+m(2) = (m1(2) + m2(2))/2
+
+y1_0_2 = y10 + h*m(1)
+y2_0_2 = y20 + h*m(2)
+
+mprintf('m1(1) = %f\n m1(2) = %f\n m2(1) = %f\n m2(2) = %f\n m(1) = %f\n m(2) = %f\n y1(0.1) = %f\n y2(0.1) = %f\n',m1(1),m1(2),m2(1),m2(2),m(1),m(2),y1_0_2,y2_0_2) \ No newline at end of file
diff --git a/243/CH13/EX13.2/13_02.sce b/243/CH13/EX13.2/13_02.sce
new file mode 100755
index 000000000..5048d067b
--- /dev/null
+++ b/243/CH13/EX13.2/13_02.sce
@@ -0,0 +1,20 @@
+//Example No. 13_02
+//Recursive Taylor Method
+//Pg No. 415
+clear ; close ; clc ;
+
+deff('F = f(x,y)','F = x^2 + y^2')
+deff('D2Y = d2y(x,y)','D2Y = 2*x + 2*y*f(x,y)');
+deff('D3Y = d3y(x,y)','D3Y = 2 + 2*y*d2y(x,y) + 2*f(x,y)^2');
+deff('D4Y = d4y(x,y)','D4Y = 6*f(x,y)*d2y(x,y) + 2*y*d3y(x,y) ');
+h = 0.2 ;
+deff('Y = y(x,y)','Y = y + f(x,y)*h + d2y(x,y)*h^2/2 + d3y(x,y)*h^3/6 + d4y(x,y)*h^4/factorial(4)');
+x0 = 0;
+y0 = 0 ;
+for i = 1:2
+ y_(i) = y(x0,y0)
+ printf(' Iteration-%i\n\n dy(0) = %f\n d2y(0) = %f\n d3y(0) = %f\n d4y(0) = %f\n ',i,f(x0,y0),d2y(x0,y0),d3y(x0,y0),d4y(x0,y0))
+ x0 = x0 + i*h
+ y0 = y_(i)
+ printf('y(0) = %f\n\n',y_(i))
+end
diff --git a/243/CH13/EX13.3/13_03.sce b/243/CH13/EX13.3/13_03.sce
new file mode 100755
index 000000000..83e4d538a
--- /dev/null
+++ b/243/CH13/EX13.3/13_03.sce
@@ -0,0 +1,21 @@
+//Example No. 13_3
+//Picard's Method
+//Pg No. 417
+clear ; close ; clc ;
+funcprot(0)
+//y'(x) = x^2 + y^2,y(0) = 0
+//y(1) = y0 + integral(x^2 + y0^2,x0,x)
+//y(1) = x^3/3
+//y(2) = 0 + integral(xY2 + y1^2,x0,x)
+// = integral(x^2 + x^6/9,0,x) = x^3/3 + x^7/63
+//therefore y(x) = x^3 /3 + x^7/63
+deff('Y = y(x)','Y = x^3/3 + x^7/63 ')
+disp(y(1),'y(1) = ',y(0.2),'y(0.2) = ',y(0.1),'y(0.1) = ','for dy(x) = x^2 + y^2 the results are ')
+
+//y'(x) = x*e^y, y(0) = 0
+//y0 = 0 , x0 = 0
+//Y(1) = 0 + integral(x*e^0,0,x) = x^2/2
+//y(2) = 0 + integral( x*e^( x^2/2 ) ,0,x) = e^(x^2/2)-1
+//therefore y(x) = e^(x^2/2) - 1
+deff('Y = y(x)','Y = exp(x^2/2) - 1 ')
+disp(y(1),'y(1) = ',y(0.2),'y(0.2) = ',y(0.1),'y(0.1) = ',,'for dy(x) = x*e^y the results are ') \ No newline at end of file
diff --git a/243/CH13/EX13.4/13_04.sce b/243/CH13/EX13.4/13_04.sce
new file mode 100755
index 000000000..a3d211572
--- /dev/null
+++ b/243/CH13/EX13.4/13_04.sce
@@ -0,0 +1,22 @@
+//Example No. 13_04
+//Euler's Method
+//Pg No. 417
+clear ; close ; clc ;
+
+deff('DY = dy(x)','DY = 3*x^2 + 1')
+x0 = 1
+y(1) = 2 ;
+//h = 0.5
+h = 0.5
+mprintf('for h = %f\n',h)
+for i = 2 : 3
+ y(i) = y(i-1) + h*dy(x0+(i-2)*h)
+ mprintf('y(%f) = %f\n',x0+(i-1)*h,y(i))
+end
+//h = 0.25
+h = 0.25
+mprintf('\nfor h = %f\n',h)
+for i = 2 : 5
+ y(i) = y(i-1) + h*dy(x0+(i-2)*h)
+ mprintf('y(%f) = %f\n',x0+(i-1)*h,y(i))
+end \ No newline at end of file
diff --git a/243/CH13/EX13.5/13_05.sce b/243/CH13/EX13.5/13_05.sce
new file mode 100755
index 000000000..a2b32831b
--- /dev/null
+++ b/243/CH13/EX13.5/13_05.sce
@@ -0,0 +1,24 @@
+//Example No. 13_05
+//Error estimation in Euler's Method
+//Pg No. 422
+clear ; close ; clc ;
+
+deff('DY = dy(x)','DY = 3*x^2 + 1')
+deff('D2Y = d2y(x)','D2Y = 6*x')
+deff('D3Y = d3y(x)','D3Y = 6')
+deff('exacty = exacty(x)','exacty = x^3 + x')
+x0 = 1
+y(1) = 2
+h = 0.5
+for i = 2 : 3
+ x(i-1) = x0 + (i-1)*h
+ y(i) = y(i-1) + h*dy(x0+(i-2)*h)
+ mprintf('\n Step %i \n x(%i) = %f\n y(%f) = %f\n',i-1,i-1,x(i-1),x(i-1),y(i))
+ Et(i-1) = d2y(x0+(i-2)*h)*h^2/2 + d3y(x0+(i-2)*h)*h^3/6
+ mprintf('\n Et(%i) = %f\n',i-1,Et(i-1))
+ truey(i-1) = exacty(x0+(i-1)*h)
+ gerr(i-1) = truey(i-1) - y(i)
+end
+
+table = [x y(2:3) truey Et gerr]
+disp(table,' x Est y true y Et Globalerr') \ No newline at end of file
diff --git a/243/CH13/EX13.6/13_06.sce b/243/CH13/EX13.6/13_06.sce
new file mode 100755
index 000000000..e6267c593
--- /dev/null
+++ b/243/CH13/EX13.6/13_06.sce
@@ -0,0 +1,30 @@
+//Example No. 13_06
+//Heun's Method
+//Pg No. 427
+clear ; close ;clc ;
+
+deff('F = f(x,y)','F = 2*y/x ')
+deff('exacty = exacty(x)','exacty = 2*x^2')
+x(1) = 1 ;
+y(1) = 2 ;
+h = 0.25 ;
+//Euler's Method
+disp('EULERS METHOD')
+for i = 2:5
+ x(i) = x(i-1) + h ;
+ y(i) = y(i-1) + h*f(x(i-1),y(i-1));
+ mprintf('y(%f) = %f \n ',x(i),y(i))
+end
+eulery = y
+//Heun's Method
+disp('HEUNS METHOD')
+for i = 2:5
+ m1 = f(x(i-1),y(i-1)) ;
+ ye(i) = y(i-1) + h*f(x(i-1),y(i-1));
+ m2 = f(x(i),ye(i)) ;
+ y(i) = y(i-1) + h*(m1 + m2)/2
+ mprintf('\nIteration %i \n m1 = %f\n ye(%f) = %f \n m2 = %f \n y(%f) = %f \n',i-1,m1,x(i),ye(i),m2,x(i),y(i))
+end
+truey = exacty(x) ;
+table = [x eulery y truey ] ;
+disp(table,' x Eulers Heuns Analytical') \ No newline at end of file
diff --git a/243/CH13/EX13.7/13_07.sce b/243/CH13/EX13.7/13_07.sce
new file mode 100755
index 000000000..e34a61735
--- /dev/null
+++ b/243/CH13/EX13.7/13_07.sce
@@ -0,0 +1,13 @@
+//Example No. 13_07
+//Polygon Method
+//Pg NO. 433
+clear ; close ; clc ;
+deff('F = f(x,y)','F = 2*y/x ')
+x(1) = 1 ;
+y(1) = 2 ;
+h = 0.25 ;
+for i = 2:3
+ x(i) = x(i-1) + h ;
+ y(i) = y(i-1) + h*f( x(i-1)+ h/2 , y(i-1) + h*f( x(i-1) , y(i-1) )/2 );
+ mprintf('y(%f) = %f \n ',x(i),y(i))
+end \ No newline at end of file
diff --git a/243/CH13/EX13.8/13_08.sce b/243/CH13/EX13.8/13_08.sce
new file mode 100755
index 000000000..0932a416f
--- /dev/null
+++ b/243/CH13/EX13.8/13_08.sce
@@ -0,0 +1,20 @@
+//Example No. 13_08
+//Classical Runge Kutta Method
+//Pg No. 439
+clear ; close ; clc ;
+
+deff('F = f(x,y)','F = x^2 + y^2');
+h = 0.2
+x(1) = 0 ;
+y(1) = 0 ;
+
+for i = 1:2
+ m1 = f( x(i) , y(i) ) ;
+ m2 = f( x(i) + h/2 , y(i) + m1*h/2 ) ;
+ m3 = f( x(i) + h/2 , y(i) + m2*h/2 ) ;
+ m4 = f( x(i) + h , y(i) + m3*h ) ;
+ x(i+1) = x(i) + h ;
+ y(i+1) = y(i) + (m1 + 2*m2 + 2*m3 + m4)*h/6 ;
+
+ mprintf('\nIteration - %i\n m1 = %f\n m2 = %f \n m3 = %f \n m4 = %f \n y(%f) = %f \n',i,m1,m2,m3,m4,x(i+1),y(i+1))
+end \ No newline at end of file
diff --git a/243/CH13/EX13.9/13_09.sce b/243/CH13/EX13.9/13_09.sce
new file mode 100755
index 000000000..ee80ac14b
--- /dev/null
+++ b/243/CH13/EX13.9/13_09.sce
@@ -0,0 +1,19 @@
+//Example No. 13_09
+//Optimum step size
+//Pg No. 444
+clear ; close ; clc ;
+
+x = 0.8 ;
+h1 = 0.05 ;
+y1 = 5.8410870 ;
+h2 = 0.025 ;
+y2 = 5.8479637 ;
+
+//d = 4
+h = ((h1^4 - h2^4)*10^(-4)/(2*(y2 - y1)))^(1/4)
+disp(h,'h = ','for four decimal places')
+
+//d = 6
+h = ((h1^4 - h2^4)*10^(-6)/(2*(y2 - y1)))^(1/4)
+disp(h,'h = ','for six decimal places')
+disp('Note-We can use h = 0.01 for four decimal places and h = 0.004 for six decimal places') \ No newline at end of file
diff --git a/243/CH14/EX14.1/14_01.sce b/243/CH14/EX14.1/14_01.sce
new file mode 100755
index 000000000..e7dbc630c
--- /dev/null
+++ b/243/CH14/EX14.1/14_01.sce
@@ -0,0 +1,48 @@
+//Example No. 14_01
+//Shooting Method
+//Pg No. 467
+clear ; close ; clc ;
+
+function [B,y] = heun(f,x0,y0,z0,h,xf)
+ x(1) = x0 ;
+ y(1) = y0 ;
+ z(1) = z0 ;
+ n = (xf - x0)/h
+ for i = 1:n
+ m1(1) = z(i) ;
+ m1(2) = f(x(i),y(i))
+ m2(1) = z(i) + h*m1(2)
+ m2(2) = f(x(i)+h,y(i)+h*m1(1))
+ m(1) = (m1(1) + m2(1))/2
+ m(2) = ( m1(2) + m2(2) )/2
+ x(i+1) = x(i) + h
+ y(i+1) = y(i) + h*m(1)
+ z(i+1) = z(i) + h*m(2)
+ end
+ B = y(n+1)
+endfunction
+
+deff('F = f(x,y)','F = 6*x')
+x0 = 1 ;
+y0 = 2 ;
+h = 0.5 ;
+z0 = 2
+M1 = z0
+xf = 2
+B = 9
+[B1,y] = heun(f,x0,y0,z0,h,xf)
+disp(B1,'B1 = ')
+if B1 ~= B then
+ disp('Since B1 is less than B , let z(1) = y(1) = 4*(M2)')
+ z0 = 4
+ M2 = z0
+ [B2,y] = heun(f,x0,y0,z0,h,xf)
+ disp(B2,'B2 = ')
+ if B2 ~= B then
+ disp('Since B2 is larger than B ,let us have third estimate of z(1) = M3 ')
+ M3 = M2 - (B2 - B)*(M2 - M1)/(B2 - B1)
+ z0 = M3
+ [B3,y] = heun(f,x0,y0,z0,h,xf)
+ disp(y,'The solution is ',B3,'B3 = ')
+ end
+end \ No newline at end of file
diff --git a/243/CH14/EX14.2/14_02.sce b/243/CH14/EX14.2/14_02.sce
new file mode 100755
index 000000000..7c4d92298
--- /dev/null
+++ b/243/CH14/EX14.2/14_02.sce
@@ -0,0 +1,22 @@
+//Example No. 14_02
+//Finite Difference Method
+//Pg No. 470
+clear ; close ; clc ;
+
+deff('D2Y = d2y(x)','D2Y = exp(x^2)')
+x_1 = 0;
+y_0 = 0 ;
+y_1 = 0 ;
+h = 0.25
+xf = 1
+n = (xf-x_1)/h
+for i = 1:n-1
+ A(i,:) = [1 -2 1]
+ B(i,1) = exp((x_1 + i*h)^2)*h^2
+end
+A(1,1) = 0 ; //since we know y0 and y4
+A(3,3) = 0 ;
+A(1,1:3) = [ A(1,2:3) 0] //rearranging terms
+A(3,1:3) = [ 0 A(3,1:2)]
+C = A\B //Solution of Equations
+mprintf(' \n The solution is \n y1 = y(0.25) = %f \n y2 = y(0.5) = %f \n y3 = y(0.75) = %f \n ',C(1),C(2),C(3))
diff --git a/243/CH14/EX14.3/14_03.sce b/243/CH14/EX14.3/14_03.sce
new file mode 100755
index 000000000..020ed5ad9
--- /dev/null
+++ b/243/CH14/EX14.3/14_03.sce
@@ -0,0 +1,16 @@
+//Example No. 14_03
+//Eigen Vectors
+//Pg No. 473
+clear ; close ; clc ;
+
+A = [8 -4 ; 2 2 ] ;
+lamd = poly(0,'lamd')
+p = det(A - lamd*eye())
+root = roots(p)
+mprintf('\n The roots are \n lamda1 = %f \n lamda2 = %f \n ',root(1),root(2))
+A1 = A - root(1)*eye()
+X1 = [-1*A1(1,2)/A1(1,1) ; 1]
+disp(X1,'X1 = ')
+A2 = A - root(2)*eye()
+X2 = [-1*A2(1,2)/A2(1,1) ; 1]
+disp(X2,'X2 = ') \ No newline at end of file
diff --git a/243/CH14/EX14.4/14_04.sce b/243/CH14/EX14.4/14_04.sce
new file mode 100755
index 000000000..f92729698
--- /dev/null
+++ b/243/CH14/EX14.4/14_04.sce
@@ -0,0 +1,20 @@
+//Example No. 14_04
+//Fadeev - Leverrier method
+//Pg No. 474
+clear ; close ; clc ;
+
+A = [ -1 0 0 ; 1 -2 3 ; 0 2 -3 ]
+[r,c] = size(A)
+A1 = A
+p(1) = trace(A1)
+for i = 2:r
+ A1 = A*( A1 - p(i-1)*eye())
+ p(i) = trace(A1)/i
+ mprintf('\nA%i = ',i)
+ disp(A1)
+ mprintf('\np%i = %f\n',i,p(i))
+end
+x = poly(0,'x');
+p = p($:-1:1)
+polynomial = poly([-p ; 1],'x','coeff')
+disp(polynomial,'Charateristic polynomial is') \ No newline at end of file
diff --git a/243/CH14/EX14.5/14_05.sce b/243/CH14/EX14.5/14_05.sce
new file mode 100755
index 000000000..b86664de9
--- /dev/null
+++ b/243/CH14/EX14.5/14_05.sce
@@ -0,0 +1,13 @@
+//Example No. 14_05
+//Eigen Vectors
+//Pg No. 476
+
+clear ; close ; clc ;
+
+A = [ -1 0 0 ; 1 -2 3 ; 0 2 -3]
+[evectors,evalues] = spec(A)
+for i = 1:3
+ mprintf('\n Eigen vector - %i \n for lamda%i = %f \n X%i = ',i,i,evalues(i,i),i)
+ evectors(:,i) = evectors(:,i)/evectors(2,i)
+ disp(evectors(:,i))
+end \ No newline at end of file
diff --git a/243/CH14/EX14.6/14_06.sce b/243/CH14/EX14.6/14_06.sce
new file mode 100755
index 000000000..518a19e81
--- /dev/null
+++ b/243/CH14/EX14.6/14_06.sce
@@ -0,0 +1,13 @@
+//Example No. 14_06
+//Power method
+//Pg No. 478
+clear ; close ; clc ;
+
+A = [ 1 2 0 ; 2 1 0 ; 0 0 -1 ]
+X(:,1) = [0 ; 1 ; 0]
+for i = 1:7
+ Y(:,i) = A*X(:,i)
+ X(:,i+1) = Y(:,i)/max(Y(:,i))
+end
+disp(' 0 1 2 3 4 5 6 7 ','Iterations')
+disp(X,'X = ',[[%nan ;%nan ;%nan] Y ],'Y = ')
diff --git a/243/CH15/EX15.1/15_01.sce b/243/CH15/EX15.1/15_01.sce
new file mode 100755
index 000000000..997baa09e
--- /dev/null
+++ b/243/CH15/EX15.1/15_01.sce
@@ -0,0 +1,27 @@
+//Example No. 15_01
+//Elliptic Equations
+//Pg No. 488
+clear ; close ; clc ;
+
+l = 15
+h = 5
+n = 1 + 15/5
+f(1,1:4) = 100 ;
+f(1:4,1) = 100 ;
+f(4,1:4) = 0 ;
+f(1:4,4) = 0 ;
+
+//At point 1 : f2 + f3 - 4f1 + 100 + 100 = 0
+//At point 2 : f1 + f4 - 4f2 + 100 + 0 = 0
+//At point 3 : f1 + f4 - 4f3 + 100 + 0 = 0
+//At point 4 : f2 + f3 - 4f4 + 0 + 0 = 0
+//
+//Final Equations are
+// -4f1 + f2 + f3 + 0 = -200
+// f1 - 4f2 + 0 + f4 = -100
+// f1 + 0 - 4f3 + f4 = -100
+// 0 + f2 + f3 - 4f4 = 0
+A = [ -4 1 1 0 ; 1 -4 0 1 ; 1 0 -4 1 ; 0 1 1 -4 ]
+B = [-200 ; -100 ; -100 ; 0]
+C = A\B
+mprintf('\n The solution of the system is \n f1 = %i \n f2 = %i \n f3 = %i \n f4 = %f \n ',C(1),C(2),C(3),C(4)) \ No newline at end of file
diff --git a/243/CH15/EX15.2/15_02.sce b/243/CH15/EX15.2/15_02.sce
new file mode 100755
index 000000000..6eb530685
--- /dev/null
+++ b/243/CH15/EX15.2/15_02.sce
@@ -0,0 +1,24 @@
+//Example No. 15_02
+//Liebmann's Iterative method
+//Pg No. 489
+clear ; close ; clc ;
+
+f(1,1:4) = 100 ;
+f(1:4,1) = 100 ;
+f(4,1:4) = 0 ;
+f(1:4,4) = 0 ;
+f(3,3) = 0
+for n = 1:5
+ for i = 2:3
+ for j = 2:3
+ if n == 1 & i == 2 & j == 2 then
+ f(i,j) = ( f(i+1,j+1) + f(i-1,j-1) + f(i-1,j+1) + f(i+1,j-1) )/4
+ else
+ f(i,j) = ( f(i+1,j) + f(i-1,j) + f(i,j+1) + f(i,j-1) )/4
+ end
+ end
+ end
+ A(2:5,n) = [f(2,2);f(2,3) ; f(3,2) ; f(3,3) ]
+end
+A(1,1:5) = 0:4
+disp(A,'First row of below matrix represents iteration number') \ No newline at end of file
diff --git a/243/CH15/EX15.3/15_03.sce b/243/CH15/EX15.3/15_03.sce
new file mode 100755
index 000000000..c4b92770e
--- /dev/null
+++ b/243/CH15/EX15.3/15_03.sce
@@ -0,0 +1,25 @@
+//Example No. 15_03
+//Poisson's Equation
+//Pg No. 490
+clear ; close ; clc ;
+
+//D2f = 2*x^2 * y^2
+// f = 0
+// h = 1
+//Point 1 : 0 + 0 + f2 + f3 - 4f1 = 2(1)^2 * 2^2
+// f2 + f3 - 4f1 = 8
+//Point 2 : 0 + 0 + f1 + f4 -4f2 = 2*(2)^2*2^2
+// f1 - 4f2 = f4 = 32
+//Point 3 : 0 + 0 + f1 + f4 - 4f4 = 2*(1^2)*1^2
+// f1 -4f3 + f4 = 2
+//Point 4 : 0 + 0 + f2 + f3 - 4f4 = 2* 2^2 * 1^2
+// f2 + f3 - 4f4 = 8
+//Rearranging the equations
+// -4f1 + f2 + f3 = 8
+// f1 - 4f2 + f4 = 32
+// f1 - 4f3 + f4 = 2
+// f2 + f3 - 4f4 = 8
+A = [ -4 1 1 0 ; 1 -4 0 1 ; 1 0 -4 1 ; 0 1 1 -4]
+B = [ 8 ; 32 ; 2 ; 8 ]
+C = A\B ;
+mprintf('The solution is \n f1 = %f \n f2 = %f \n f3 = %f \n f4 = %f \n ', C(1),C(2),C(3),C(4)) \ No newline at end of file
diff --git a/243/CH15/EX15.4/15_04.sce b/243/CH15/EX15.4/15_04.sce
new file mode 100755
index 000000000..449453485
--- /dev/null
+++ b/243/CH15/EX15.4/15_04.sce
@@ -0,0 +1,14 @@
+//Example No. 15_04
+//Gauss-Seidel Iteration
+//Pg No. 491
+clear ; close ; clc ;
+
+f2 = 0
+f3 = 0
+for i = 1:4
+ f1 = (f2 + f3 - 8)/4
+ f4 = f1
+ f2 = (f1 + f4 -32)/4
+ f3 = (f1 + f4 - 2)/4
+ mprintf('\nIteration %i\n f1 = %f, f2 = %f, f3 = %f, f4 = %f\n',i,f1,f2,f3,f4)
+end \ No newline at end of file
diff --git a/243/CH15/EX15.5/15_05.sce b/243/CH15/EX15.5/15_05.sce
new file mode 100755
index 000000000..a3d627066
--- /dev/null
+++ b/243/CH15/EX15.5/15_05.sce
@@ -0,0 +1,19 @@
+//Example No. 15_05
+//Initial Value Problems
+//Pg No. 494
+clear ; close ; clc ;
+
+h = 1 ;
+k = 2 ;
+tau = h^2/(2*k)
+for i = 2:4
+ f(1,i) = 50*( 4 - (i-1) )
+end
+f(1:7,1) = 0 ;
+f(1:7,5) = 0 ;
+for j = 1:6
+ for i = 2:4
+ f(j+1,i) = ( f(j,i-1) + f(j,i+1) )/2
+ end
+end
+disp(f,'The final results are ') \ No newline at end of file
diff --git a/243/CH15/EX15.6/15_06.sce b/243/CH15/EX15.6/15_06.sce
new file mode 100755
index 000000000..69db89466
--- /dev/null
+++ b/243/CH15/EX15.6/15_06.sce
@@ -0,0 +1,24 @@
+//Example No. 15_06
+//Crank-Nicholson Implicit Method
+//Pg No. 497
+clear ; close ; clc ;
+
+h = 1 ;
+k = 2 ;
+tau = h^2/(2*k)
+for i = 2:4
+ f(1,i) = 50*( 4 - (i-1) )
+end
+f(1:5,1) = 0 ;
+f(1:5,5) = 0 ;
+A = [4 -1 0 ; -1 4 -1 ; 0 -1 4]
+for j = 1:4
+ for i = 2:4
+ B(i-1,1) = f(j,i-1) + f(j,i+1)
+ end
+ C = A\B
+ f(j+1,2) = C(1)
+ f(j+1,3) = C(2)
+ f(j+1,4) = C(3)
+end
+disp(f,'The final solution using crank nicholson implicit method is ') \ No newline at end of file
diff --git a/243/CH15/EX15.7/15_07.sce b/243/CH15/EX15.7/15_07.sce
new file mode 100755
index 000000000..63e8e5a44
--- /dev/null
+++ b/243/CH15/EX15.7/15_07.sce
@@ -0,0 +1,25 @@
+//Example No. 15_07
+//Hyperbolic Equations
+//Pg No. 500
+clear ; close ;clc ;
+
+h = 1
+Tbyp = 4
+tau = sqrt(h^2 /4)
+r = 1+(2.5 - 0)/tau
+c = 1+(5 - 0)/h
+for i = 2:c-1
+ f(1,i) = (i-1)*(5 - (i-1) )
+end
+f(1:r,1) = 0
+f(1:r,c) = 0
+for i = 2:c-1
+ g(i) = 0
+ f(2,i) = (f(1,i+1) + f(1,i-1))/2 + tau*g(i)
+end
+for j = 2:r-1
+ for i = 2:c-1
+ f(j+1,i) = -f(j-1,i) + f(j,i+1) + f(j,i-1)
+ end
+end
+disp(f,'The values estimated are ')
diff --git a/243/CH3/EX3.1/3_01.sce b/243/CH3/EX3.1/3_01.sce
new file mode 100755
index 000000000..0e2e7143f
--- /dev/null
+++ b/243/CH3/EX3.1/3_01.sce
@@ -0,0 +1,22 @@
+//Example No. 3_01
+//Binary to decimal
+//Pg No. 45
+clear ;close ; clc ;
+
+b = '1101.1101'
+v = strsplit(b,'.') //splitting integral part and fraction part
+integralp = str2code(v(1))//converting strings to numbers
+fractionp = str2code(v(2))
+li = length(integralp) //lenght of integral part
+lf = length(fractionp) // and fractional part
+di = 0 ;//Initializing integral part and decimal part
+df = 0 ;
+for i = 1:li
+ di = 2*di+integralp(i)
+end
+for i = lf:-1:1
+ df = df/2 + fractionp(i)
+end
+df = df/2 ;
+d = di + df ; //Integral and fractional parts
+disp(d,'Decimal value = ') \ No newline at end of file
diff --git a/243/CH3/EX3.10/3_10.sce b/243/CH3/EX3.10/3_10.sce
new file mode 100755
index 000000000..a00aa0d85
--- /dev/null
+++ b/243/CH3/EX3.10/3_10.sce
@@ -0,0 +1,29 @@
+//Example No. 3_10
+//Floating Point Notation
+//Pg No. 52
+clear ; close ; clc ;
+
+function [m,e] =float_notation(n)
+m = n ;
+for i = 1:16
+ if abs(m) >= 1 then
+ m = n/10^i
+ e = i
+ elseif abs(m) < 0.1
+ m = n*10^i
+ e = -i
+ else
+ if i == 1 then
+ e = 0
+ end
+ break ;
+ end
+end
+endfunction
+
+[m,e] = float_notation(0.00596)
+mprintf('\n 0.00596 is expressed as %f*10^%i \n',m,e)
+[m,e] = float_notation(65.7452)
+mprintf('\n 65.7452 is expressed as %f*10^%i \n',m,e)
+[m,e] = float_notation(-486.8)
+mprintf('\n -486.8 is expressed as %f*10^%i \n',m,e) \ No newline at end of file
diff --git a/243/CH3/EX3.11/3_11.sce b/243/CH3/EX3.11/3_11.sce
new file mode 100755
index 000000000..9dc16d29e
--- /dev/null
+++ b/243/CH3/EX3.11/3_11.sce
@@ -0,0 +1,11 @@
+//Example No. 3_11
+//Interger Arithmetic
+//Pg No. 53
+clear ;close ;clc ;
+
+disp(int(25 + 12))
+disp(int(25 - 12))
+disp(int(12 - 25))
+disp(int(25*12))
+disp(int(25/12))
+disp(int(12/25)) \ No newline at end of file
diff --git a/243/CH3/EX3.12/3_12.sce b/243/CH3/EX3.12/3_12.sce
new file mode 100755
index 000000000..34f905129
--- /dev/null
+++ b/243/CH3/EX3.12/3_12.sce
@@ -0,0 +1,13 @@
+//Example No. 3_12
+//Integer Arithmetic
+//Pg No. 53
+clear ;close ;clc ;
+a = 5 ;
+b = 7 ;
+c = 3 ;
+Lhs = int((a + b)/c)
+Rhs = int(a/c) + int(b/c)
+disp(Rhs,'a/c + b/c = ',Lhs,'(a+b)/c = ')
+if Lhs ~= Rhs then
+ disp('The results are not identical.This is because the remainder of an integer division is always truncated')
+end \ No newline at end of file
diff --git a/243/CH3/EX3.13/3_13.sce b/243/CH3/EX3.13/3_13.sce
new file mode 100755
index 000000000..8ef53066d
--- /dev/null
+++ b/243/CH3/EX3.13/3_13.sce
@@ -0,0 +1,28 @@
+//Example No. 3_13
+//Floating Point Arithmetic
+//Pg No. 54
+clear ;close ;clc ;
+
+fx = 0.586351 ;
+Ex = 5 ;
+fy = 0.964572 ;
+Ey = 2 ;
+[Ez,n] = max(Ex,Ey)
+if n == 1 then
+ fy = fy*10^(Ey-Ex)
+ fz = fx + fy
+ if fz > 1 then
+ fz = fz*10^(-1)
+ Ez = Ez + 1
+ end
+ disp(fz,'fz = ',fy,'fy = ',Ez,'Ez = ')
+else
+ fx = fx*10^(Ex - Ey)
+ fz = fx + fy
+ if fz > 1 then
+ fz = fz*10^(-1)
+ Ez = Ez + 1
+ end
+ disp(fz,'fz = ',fx,'fx = ',Ez,'Ez = ')
+end
+mprintf('\n z = %f E%i \n',fz,Ez) \ No newline at end of file
diff --git a/243/CH3/EX3.14/3_14.sce b/243/CH3/EX3.14/3_14.sce
new file mode 100755
index 000000000..670d00cba
--- /dev/null
+++ b/243/CH3/EX3.14/3_14.sce
@@ -0,0 +1,28 @@
+//Example No. 3_14
+//Floating Point Arithmetic
+//Pg No. 54
+clear ;close ;clc ;
+
+fx = 0.735816 ;
+Ex = 4 ;
+fy = 0.635742 ;
+Ey = 4 ;
+[Ez,n] = max(Ex,Ey)
+if n == 1 then
+ fy = fy*10^(Ey-Ex)
+ fz = fx + fy
+ if fz > 1 then
+ fz = fz*10^(-1)
+ Ez = Ez + 1
+ end
+ disp(fz,'fz = ',fy,'fy = ',Ez,'Ez = ')
+else
+ fx = fx*10^(Ex - Ey)
+ fz = fx + fy
+ if fz > 1 then
+ fz = fz*10^(-1)
+ Ez = Ez + 1
+ end
+ disp(fz,'fz = ',fx,'fx = ',Ez,'Ez = ')
+end
+mprintf('\n z = %f E%i \n',fz,Ez) \ No newline at end of file
diff --git a/243/CH3/EX3.15/3_15.sce b/243/CH3/EX3.15/3_15.sce
new file mode 100755
index 000000000..ce894febf
--- /dev/null
+++ b/243/CH3/EX3.15/3_15.sce
@@ -0,0 +1,21 @@
+//Example No. 3_15
+//Floating Point Arithmetic
+//Pg No. 54
+clear ;close ;clc ;
+
+fx = 0.999658 ;
+Ex = -3 ;
+fy = 0.994576 ;
+Ey = -3 ;
+Ez = max(Ex,Ey)
+fy = fy*10^(Ey-Ex)
+fz = fx - fy
+disp(fz,'fz = ',Ez,'Ez = ')
+mprintf('\n z = %f E%i \n',fz,Ez)
+if fz < 0.1 then
+ fz = fz*10^6 //Since we are using 6 significant digits
+ n = length(string(fz))
+ fz = fz/10^n
+ Ez = Ez + n - 6
+ mprintf('\n z = %f E%i (normalised) \n',fz,Ez)
+end \ No newline at end of file
diff --git a/243/CH3/EX3.16/3_16.sce b/243/CH3/EX3.16/3_16.sce
new file mode 100755
index 000000000..638f52d65
--- /dev/null
+++ b/243/CH3/EX3.16/3_16.sce
@@ -0,0 +1,17 @@
+//Example No. 3_16
+//Floating Point Arithmetic
+//Pg No. 55
+clear ;close ;clc ;
+
+fx = 0.200000 ;
+Ex = 4 ;
+fy = 0.400000 ;
+Ey = -2 ;
+fz = fx*fy
+Ez = Ex + Ey
+mprintf('\n fz = %f \n Ez = %i \n z = %f E%i \n',fz,Ez,fz,Ez)
+if fz < 0.1 then
+ fz = fz*10
+ Ez = Ez - 1
+ mprintf('\n z = %f E%i (normalised) \n',fz,Ez)
+end \ No newline at end of file
diff --git a/243/CH3/EX3.17/3_17.sce b/243/CH3/EX3.17/3_17.sce
new file mode 100755
index 000000000..9c60d7499
--- /dev/null
+++ b/243/CH3/EX3.17/3_17.sce
@@ -0,0 +1,18 @@
+//Example No. 3_17
+//Floating Point Arithmetic
+//Pg No. 55
+clear ;close ;clc ;
+
+fx = 0.876543 ;
+Ex = -5 ;
+fy = 0.200000 ;
+Ey = -3 ;
+fz = fx/fy
+Ez = Ex - Ey
+mprintf('\n fz = %f \n Ez = %i \n z = %f E%i \n',fz,Ez,fz,Ez)
+
+if fz > 1 then
+ fz = fz/10
+ Ez = Ez + 1
+ mprintf('\n z = %f E%i (normalised) \n',fz,Ez)
+end \ No newline at end of file
diff --git a/243/CH3/EX3.18/3_18.sce b/243/CH3/EX3.18/3_18.sce
new file mode 100755
index 000000000..b5b1a3773
--- /dev/null
+++ b/243/CH3/EX3.18/3_18.sce
@@ -0,0 +1,28 @@
+//Example No. 3_18
+//Floating Point Arithmetic
+//Pg No. 56
+clear ;close ;clc ;
+
+fx = 0.500000 ;
+Ex = 1 ;
+fy = 0.100000 ;
+Ey = -7 ;
+[Ez,n] = max(Ex,Ey)
+if n == 1 then
+ fy = fy*10^(Ey-Ex)
+ fz = fx + fy
+ if fz > 1 then
+ fz = fz*10^(-1)
+ Ez = Ez + 1
+ end
+ disp(fy,'fy = ',Ez,'Ez = ')
+else
+ fx = fx*10^(Ex - Ey)
+ fz = fx + fy
+ if fz > 1 then
+ fz = fz*10^(-1)
+ Ez = Ez + 1
+ end
+ disp(fx,'fx = ',Ez,'Ez = ')
+end
+mprintf('\n fz = %f \n z = %f E%i \n',fz,fz,Ez) \ No newline at end of file
diff --git a/243/CH3/EX3.19/3_19.sce b/243/CH3/EX3.19/3_19.sce
new file mode 100755
index 000000000..e8b2a38f4
--- /dev/null
+++ b/243/CH3/EX3.19/3_19.sce
@@ -0,0 +1,17 @@
+//Example No. 3_19
+//Floating Point Arithmetic
+//Pg No. 56
+clear ;close ;clc ;
+
+fx = 0.350000 ;
+Ex = 40 ;
+fy = 0.500000 ;
+Ey = 70 ;
+fz = fx*fy
+Ez = Ex + Ey
+mprintf('\n fz = %f \n Ez = %i \n z = %f E%i \n',fz,Ez,fz,Ez)
+if fz < 0.1 then
+ fz = fz*10
+ Ez = Ez - 1
+ mprintf('\n z = %f E%i (normalised) \n',fz,Ez)
+end \ No newline at end of file
diff --git a/243/CH3/EX3.2/3_02.sce b/243/CH3/EX3.2/3_02.sce
new file mode 100755
index 000000000..43a501ad4
--- /dev/null
+++ b/243/CH3/EX3.2/3_02.sce
@@ -0,0 +1,17 @@
+//Example No. 3_02
+//hexadecimal to decimal
+//Pg No. 46
+clear ; close ; clc ;
+
+h = '12AF' ;
+u = str2code(h)
+u = abs(u)
+n = length(u)
+d = 0
+for i = 1:n
+ d = d*16 + u(i)
+end
+disp(d,'Decimal value = ')
+//Using Scilab Function
+d = hex2dec(h)
+disp(d,'Using scilab function Decimal value = ') \ No newline at end of file
diff --git a/243/CH3/EX3.20/3_20.sce b/243/CH3/EX3.20/3_20.sce
new file mode 100755
index 000000000..6496ad36d
--- /dev/null
+++ b/243/CH3/EX3.20/3_20.sce
@@ -0,0 +1,18 @@
+//Example No. 3_20
+//Floating Point Arithmetic
+//Pg No. 56
+clear ;close ;clc ;
+
+fx = 0.875000 ;
+Ex = -18 ;
+fy = 0.200000 ;
+Ey = 95 ;
+fz = fx/fy
+Ez = Ex - Ey
+mprintf('\n fz = %f \n Ez = %i \n z = %f E%i \n',fz,Ez,fz,Ez)
+
+if fz > 1 then
+ fz = fz/10
+ Ez = Ez + 1
+ mprintf('\n z = %f E%i (normalised) \n',fz,Ez)
+end \ No newline at end of file
diff --git a/243/CH3/EX3.21/3_21.sce b/243/CH3/EX3.21/3_21.sce
new file mode 100755
index 000000000..9d0f1f7b2
--- /dev/null
+++ b/243/CH3/EX3.21/3_21.sce
@@ -0,0 +1,20 @@
+//Example No. 3_21
+//Floating Point Arithmetic
+//Pg No. 57
+clear ;close ;clc ;
+
+fx = 0.500000 ;
+Ex = 0 ;
+fy = 0.499998 ;
+Ey = 0 ;
+Ez = 0 ;
+fz = fx - fy
+disp(fz,'fz = ',Ez,'Ez = ')
+mprintf('\n z = %f E%i \n',fz,Ez)
+if fz < 0.1 then
+ fz = fz*10^6
+ n = length(string(fz))
+ fz = fz/10^n
+ Ez = Ez + n - 6
+ mprintf('\n z = %f E%i (normalised) \n',fz,Ez)
+end \ No newline at end of file
diff --git a/243/CH3/EX3.22/3_22.sce b/243/CH3/EX3.22/3_22.sce
new file mode 100755
index 000000000..c687feebd
--- /dev/null
+++ b/243/CH3/EX3.22/3_22.sce
@@ -0,0 +1,67 @@
+//Example No. 3_22
+//Laws of Arithmetic
+//Pg No. 57
+clear ; close ; clc ;
+function [fz,Ez] =add_sub(fx,Ex,fy,Ey) //addition and subtraction fuction
+if fx*fy >= 0 then
+ //Addition
+ [Ez,n] = max(Ex,Ey)
+ if n == 1 then
+ fy = fy*10^(Ey-Ex)
+ fz = fx + fy
+ if fz > 1 then
+ fz = fz*10^(-1)
+ Ez = Ez + 1
+ end
+ else
+ fx = fx*10^(Ex - Ey)
+ fz = fx + fy
+ if fz > 1 then
+ fz = fz*10^(-1)
+ Ez = Ez + 1
+ end
+ end
+
+else
+ //Subtraction
+ [Ez,n] = max(Ex,Ey)
+ if n == 1 then
+ fy = fy*10^(Ey-Ex)
+ fz = fx + fy
+ if abs(fz) < 0.1 then
+ fz = fz*10^6
+ fz = floor(fz)
+ nfz = length(string(abs(fz)))
+ fz = fz/10^nfz
+ Ez = nfz - 6
+ end
+ else
+ fx = fx*10^(Ex - Ey)
+ fz = fx + fy
+ if fz < 0.1 then
+ fz = fz*10^6
+ fz = int(fz)
+ nfz = length(string(abs(fz)))
+ fz = fz/10^nfz
+ Ez = nfz - 6
+ end
+ end
+end
+endfunction
+
+fx = 0.456732
+Ex = -2
+fy = 0.243451
+Ey = 0
+fz = -0.24800
+Ez = 0
+
+[fxy,Exy] = add_sub(fx,Ex,fy,Ey)
+[fxy_z,Exy_z] = add_sub(fxy,Exy,fz,Ez)
+[fyz,Eyz] = add_sub(fy,Ey,fz,Ez)
+[fx_yz,Ex_yz] = add_sub(fx,Ex,fyz,Eyz)
+mprintf('fxy = %f\n Exy = %i \n fxy_z = %f\n Exy_z = %i \n fyz = %f \n Eyz = %i \n fx_yz = %f \n Ex_yz = %i \n',fxy,Exy,fxy_z,Exy_z,fyz,Eyz,fx_yz,Ex_yz)
+
+if fxy_z ~= fx_yz | Exy_z ~= Ex_yz then
+ disp('(x+y) + z ~= x + (y+z)')
+end \ No newline at end of file
diff --git a/243/CH3/EX3.23/3_23.sce b/243/CH3/EX3.23/3_23.sce
new file mode 100755
index 000000000..50d9630c0
--- /dev/null
+++ b/243/CH3/EX3.23/3_23.sce
@@ -0,0 +1,10 @@
+//Example No. 3_23
+//Associative law
+//Pg No. 58
+clear ; close ; clc ;
+x = 0.400000*10^40
+y = 0.500000*10^70
+z = 0.300000*10^(-30)
+disp('In book they have considered the maximum exponent can be only 99, since 110 is greater than 99 the result is erroneous')
+disp((x*y)*z,'xy_z = ','but in scilab the this value is much larger than 110 so we get a correct result ')
+disp(x*(y*z),'x_yz = ') \ No newline at end of file
diff --git a/243/CH3/EX3.24/3_24.sce b/243/CH3/EX3.24/3_24.sce
new file mode 100755
index 000000000..b43ecbe0c
--- /dev/null
+++ b/243/CH3/EX3.24/3_24.sce
@@ -0,0 +1,37 @@
+//Example No. 3_24
+//Distributive law
+//Pg No. 58
+clear ;close ;clc ;
+
+x = 0.400000*10^1 ;
+fx = 0.400000
+Ex = 1
+y = 0.200001*10^0 ;
+z = 0.200000*10^0 ;
+x_yz = x*(y-z)
+x_yz = x_yz*10^6
+x_yz = floor(x_yz) //considering only six significant digits
+n = length(string(x_yz))
+fx_yz = x_yz/10^n
+Ex_yz = n - 6
+x_yz = fx_yz *10^Ex_yz
+disp(x_yz,'x_yz = ')
+
+fxy = fx*y
+fxy = fxy*10^6
+fxy = floor(fxy) //considering only six significant digits
+n = length(string(fxy))
+fxy = fxy/10^n
+Exy = n - 6
+xy = fxy * 10^Exy
+
+fxz = fx*z
+fxz = fxz*10^6
+fxz = floor(fxz) //considering only six significant digits
+n = length(string(fxz))
+fxz = fxz/10^n
+Exz = n - 6
+xz = fxz * 10^Exz
+
+xy_xz = xy - xz
+disp(xy_xz,'xy_xz = ') \ No newline at end of file
diff --git a/243/CH3/EX3.3/3_03.sce b/243/CH3/EX3.3/3_03.sce
new file mode 100755
index 000000000..43e1f5712
--- /dev/null
+++ b/243/CH3/EX3.3/3_03.sce
@@ -0,0 +1,25 @@
+//Example No. 3_03
+//Decimal to Binary
+//Pg No. 47
+clear; close ; clc;
+
+d = 43.375 ;
+//Separating integral part and fractional parts
+dint = floor(d)
+dfrac = d - dint
+
+//Integral Part
+i = 1 ;
+intp = dec2bin(dint)
+
+//Fractional part
+j = 1 ;
+while dfrac ~= 0
+ fracp(j) = floor(dfrac*2)
+ dfrac = dfrac*2 - floor(dfrac*2)
+ j = j+1 ;
+end
+fracp = strcat(string(fracp))
+
+b = strcat([intp,fracp],'.') //combining integral part and fractional part
+disp(b,'Binary equivalent = ') \ No newline at end of file
diff --git a/243/CH3/EX3.4/3_04.sce b/243/CH3/EX3.4/3_04.sce
new file mode 100755
index 000000000..4a42f83d3
--- /dev/null
+++ b/243/CH3/EX3.4/3_04.sce
@@ -0,0 +1,8 @@
+//Example No. 3_04
+//Decimal to Octal
+//Pg No. 48
+clear ; close ; clc ;
+
+d = 163 ;
+oct = dec2oct(d)
+disp(oct,'Octal number = ') \ No newline at end of file
diff --git a/243/CH3/EX3.5/3_05.sce b/243/CH3/EX3.5/3_05.sce
new file mode 100755
index 000000000..53d61068c
--- /dev/null
+++ b/243/CH3/EX3.5/3_05.sce
@@ -0,0 +1,33 @@
+//Example No. 3_05
+//Decimal to binary
+//Pg No. 48
+clear ; close ; clc ;
+
+d = 0.65
+j = 1 ;
+
+while d ~= 0
+ fracp(j) = floor(d*2) //integral part of d*2
+ d = d*2 - floor(d*2) //Fractional part of d*2
+ j = j+1 ;
+ decp(j-1) = d
+ p = 1
+
+ for i = 1:j-2
+ if abs(d - decp(i))< 0.001 then //Condition for terminating the recurring binary equivalent by
+ p = 0 //finding out if the new fractional part is equal to any of the previous fractonal parts
+ break
+ end
+ end
+
+ if p == 0 then
+ break
+ end
+
+end
+rec_p = fracp(i+1:j-1) //Recurring part
+
+rec_p = strcat(string(rec_p))
+fracp = strcat(string(fracp))
+
+disp(strcat( [fracp,rec_p] ),'Binary equivalent = ')
diff --git a/243/CH3/EX3.6/3_06.sce b/243/CH3/EX3.6/3_06.sce
new file mode 100755
index 000000000..7ed49abcb
--- /dev/null
+++ b/243/CH3/EX3.6/3_06.sce
@@ -0,0 +1,31 @@
+//Example No. 3_06
+//Octal to Hexadecimal
+//Pg No. 49
+clear ; close ; clc ;
+
+oct = '243' ;
+u = str2code(oct)
+n = length(u)
+for i = 1:n
+ b(i) = dec2bin(u(i)) //Converting each digit to binary equivalent
+ if length(b(i)) == 2 then //making the binary equivalents into a groups of triplets
+ b(i) = strcat(['0',b(i)])
+ elseif length(b(i)) == 1
+ b(i) = strcat(['0','0',b(i)])
+ end
+end
+bin = strcat(b) //combining all the triplets
+i = 1 ;
+while length(bin) > 4
+ OtoH = strsplit(bin,length(bin)-4) //splitting the binary equivalent into groups of binary quadruplets
+ bin = OtoH(1)
+ h(i) = OtoH(2)
+ i = i+1
+end
+h(i) = bin ;
+h = h($:-1:1)
+h = bin2dec(h)
+h = dec2hex(h)
+h = strcat(h)
+
+disp(h,'Hexadecimal equivalent of octal number 243 is ')
diff --git a/243/CH3/EX3.7/3_07.sce b/243/CH3/EX3.7/3_07.sce
new file mode 100755
index 000000000..cc87c2d80
--- /dev/null
+++ b/243/CH3/EX3.7/3_07.sce
@@ -0,0 +1,40 @@
+//Example No. 3_07
+//Hexadecimal to Octal
+//Pg No. 49
+clear ; close ; clc ;
+
+h = '39.B8' ;
+h = strsplit(h,'.') //separating integral part and fractional part
+cint = abs(str2code(h(1)))
+cfrac = abs(str2code(h(2)))
+bint = dec2bin(cint)
+bfrac = dec2bin(cfrac)
+bint = strcat(bint)
+bfrac = strcat(bfrac)
+
+//Integral Part
+i = 1 ;
+while length(bint) > 3
+ HtoO = strsplit(bint,length(bint)-3)
+ bint = HtoO(1)
+ oint(i) = HtoO(2)
+ i = i+1 ;
+end
+oint(i) = bint
+oint =oint($:-1:1)
+oint = bin2dec(oint)
+
+//Fraction Part
+i = 1 ;
+while length(bfrac)> 3
+ HtoO = strsplit(bfrac,3)
+ bfrac = HtoO(2)
+ ofrac(i) = HtoO(1)
+ i = i+1
+end
+ofrac(i) = bfrac
+ofrac = bin2dec(ofrac)
+
+//Combining integral part and fraction part
+oct = strcat([strcat(string(oint)),strcat(string(ofrac))],'.')
+disp(oct,'Octal number equivalent of Hexadecimal number 39.B8 is ')
diff --git a/243/CH3/EX3.8/3_08.sce b/243/CH3/EX3.8/3_08.sce
new file mode 100755
index 000000000..3bb6c8c42
--- /dev/null
+++ b/243/CH3/EX3.8/3_08.sce
@@ -0,0 +1,14 @@
+//Example No. 3_08
+//-ve Integer to binary
+//Pg No. 50
+clear ; close ; clc ;
+
+negint = -13
+posbin = dec2bin(abs(negint))
+posbin = strcat(['0',posbin])
+compl_1 = strsubst(posbin,'0','d')
+compl_1 = strsubst(compl_1,'1','0')
+compl_1 = strsubst(compl_1,'d','1')
+compl_2 = dec2bin(bin2dec(compl_1) + 1)
+
+disp(compl_2,'Binary equivalent of -13 is ') \ No newline at end of file
diff --git a/243/CH3/EX3.9/3_09.sce b/243/CH3/EX3.9/3_09.sce
new file mode 100755
index 000000000..0e8521997
--- /dev/null
+++ b/243/CH3/EX3.9/3_09.sce
@@ -0,0 +1,28 @@
+//Example No. 3_09
+//Binary representation
+//Pg No. 51
+clear ;close ;clc ;
+
+n = -32768
+compl_32767 = dec2bin(bitcmp(abs(n)-1,16) + 1)
+disp(compl_32767,'binary equivalent of -32767 is ')
+
+n_1 = -1
+dcomp = bitcmp(1,16)
+compl_1 = dec2bin(dcomp+1)
+disp(compl_1,'binary equivalent of -1 is ')
+compl_32767_code = str2code(compl_32767)
+compl_1_code = str2code(compl_1)
+summ(1) = 1 //since -32768 is a negative number
+c = 0
+for i = 16:-1:2
+ summ(i) = compl_32767_code(i) + compl_1_code(i)+c
+ if summ(i) == 2 then
+ summ(i) = 0
+ c = 1
+ else
+ c = 0
+ end
+end
+binfinal = strcat(string(summ))
+disp(binfinal,'Binary equivalent of -32768 in a 16 bit word is ')
diff --git a/243/CH4/EX4.1/4_01.sce b/243/CH4/EX4.1/4_01.sce
new file mode 100755
index 000000000..7805fea38
--- /dev/null
+++ b/243/CH4/EX4.1/4_01.sce
@@ -0,0 +1,22 @@
+//Example No. 4_01
+//Greatest precision
+//Pg No. 63
+clear ; close ; clc ;
+
+a = '4.3201'
+b = '4.32'
+c = '4.320106'
+na = length(a)-strindex(a,'.')
+mprintf('\n %s has a precision of 10^-%i\n',a,na)
+nb = length(b)-strindex(b,'.')
+mprintf('\n %s has a precision of 10^-%i\n',b,nb)
+nc = length(c)-strindex(c,'.')
+mprintf('\n %s has a precision of 10^-%i\n',c,nc)
+[n,e] = max(na,nb,nc)
+if e ==1 then
+ mprintf('\n The number with highest precision is %s\n',a)
+elseif e == 2
+ mprintf('\n The number with highest precision is %s\n',b)
+else
+ mprintf('\n The number with highest precision is %s\n',c)
+end
diff --git a/243/CH4/EX4.10/4_10.sce b/243/CH4/EX4.10/4_10.sce
new file mode 100755
index 000000000..f9fe38d6d
--- /dev/null
+++ b/243/CH4/EX4.10/4_10.sce
@@ -0,0 +1,14 @@
+//Example No. 4_10
+//Errors in Sequence of Computations
+//Pg No. 77
+clear ; close ; clc ;
+
+x_a = 2.35 ;
+y_a = 6.74 ;
+z_a = 3.45 ;
+ex = abs(x_a)*10^(-3+1)/2
+ey = abs(y_a)*10^(-3+1)/2
+ez = abs(z_a)*10^(-3+1)/2
+exy = abs(x_a)*ey + abs(y_a)*ex
+ew = abs(exy) + abs(ez)
+mprintf('\n ex = %.5f \n ey = %.5f \n ez = %.5f \n exy = %.5f \n ew = %.5f \n',ex,ey,ez,exy,ew) \ No newline at end of file
diff --git a/243/CH4/EX4.11/4_11.sce b/243/CH4/EX4.11/4_11.sce
new file mode 100755
index 000000000..ec56325c9
--- /dev/null
+++ b/243/CH4/EX4.11/4_11.sce
@@ -0,0 +1,28 @@
+//Example No. 4_11
+//Addition of Chain of Numbers
+//Pg No. 77
+clear ; close ; clc ;
+
+x = 9678 ;
+y = 678 ;
+z = 78 ;
+d = 4 ; //length of mantissa
+fx = x/10^4
+fy = y/10^4
+fu = fx + fy
+Eu = 4
+if fu >= 1 then
+ fu = fu/10
+ Eu = Eu + 1
+end
+//since length of mantissa is only four we need to maintain only four places in decimal, so
+fu = floor(fu*10^4)/10^4
+u = fu * 10^Eu
+w = u + z
+n = length(string(w))
+w = floor(w/10^(n-4))*10^(n-4) //To maintain length of mantissa = 4
+disp(w,'w = ')
+True_w = 10444
+ew = True_w - w
+er_w = (True_w - w)/True_w
+disp(er_w,'er,w = ',ew,'ew = ',True_w,'True w = ') \ No newline at end of file
diff --git a/243/CH4/EX4.12/4_12.sce b/243/CH4/EX4.12/4_12.sce
new file mode 100755
index 000000000..3c2c127c3
--- /dev/null
+++ b/243/CH4/EX4.12/4_12.sce
@@ -0,0 +1,36 @@
+//Example No. 4_12
+//Addition of chain Numbers
+//Pg No. 77
+clear ; close ; clc ;
+
+x = 9678 ;
+y = 678 ;
+z = 78 ;
+d = 4 ; //length of mantissa
+n = max(length( string(y) ) , length(string(z)))
+fy = y/10^n
+fz = z/10^n
+fu = fy + fz
+Eu = n
+if fu >= 1 then
+ fu = fu/10
+ Eu = Eu + 1
+end
+u = fu * 10^Eu
+n = max(length( string(x) ) , length(string(u)))
+fu = u/10^4
+fx = x/10^4
+fw = fu + fx
+Ew = 4
+if fw >= 1 then
+ fw = fw/10
+ Ew = Ew + 1
+end
+//since length of mantissa is only four we need to maintain only four places in decimal, so
+fw = floor(fw*10^4)/10^4
+w = fw*10^Ew
+disp(w,'w = ')
+True_w = 10444
+ew = True_w - w
+er_w = (True_w - w)/True_w
+disp(er_w,'er,w = ',ew,'ew = ',True_w,'True w = ') \ No newline at end of file
diff --git a/243/CH4/EX4.13/4_13.sce b/243/CH4/EX4.13/4_13.sce
new file mode 100755
index 000000000..e1611ef87
--- /dev/null
+++ b/243/CH4/EX4.13/4_13.sce
@@ -0,0 +1,4 @@
+//Example No. 4_13
+//Pg No. 78
+disp('Theoritical Problem')
+disp('For Details go to page no. 78') \ No newline at end of file
diff --git a/243/CH4/EX4.14/4_14.sce b/243/CH4/EX4.14/4_14.sce
new file mode 100755
index 000000000..74e3c37bc
--- /dev/null
+++ b/243/CH4/EX4.14/4_14.sce
@@ -0,0 +1,13 @@
+//Example No. 4_14
+//Absolute & Relative Errors
+//Pg No. 79
+clear ; close ; clc ;
+
+xa = 4.000
+deff('f = f(x)','f = sqrt(x) + x')
+//Assuming x is correct to 4 significant digits
+ex = 0.5 * 10^(-4 + 1)
+df_xa = derivative(f,4)
+ef = ex * df_xa
+er_f = ef/f(xa)
+mprintf('\n ex = %.0E \n df(xa) = %.2f \n ef = %.2E \n er,f = %.2E \n', ex,df_xa,ef,er_f) \ No newline at end of file
diff --git a/243/CH4/EX4.15/4_15.sce b/243/CH4/EX4.15/4_15.sce
new file mode 100755
index 000000000..46904deb6
--- /dev/null
+++ b/243/CH4/EX4.15/4_15.sce
@@ -0,0 +1,14 @@
+//Example No. 4_15
+//Error Evaluation
+//Pg No. 80
+clear ; close ; clc ;
+
+x = 3.00 ;
+y = 4.00 ;
+deff('f = f(x,y)','f = x^2 + y^2 ')
+deff('df_x = df_x(x)','df_x = 2*x')
+deff('df_y = df_y(y)','df_y = 2*y')
+ex = 0.005
+ey = 0.005
+ef = df_x(x)*ex + df_y(y)*ey
+disp(ef,'ef = ') \ No newline at end of file
diff --git a/243/CH4/EX4.16/4_16.sce b/243/CH4/EX4.16/4_16.sce
new file mode 100755
index 000000000..d1b87e091
--- /dev/null
+++ b/243/CH4/EX4.16/4_16.sce
@@ -0,0 +1,17 @@
+//Example No. 4_16
+//Condition and Stability
+//Pg No. 82
+clear ; close ; clc ;
+
+C1 = 7.00 ;
+C2 = 3.00 ;
+m1 = 2.00 ;
+m2 = 2.01 ;
+x = (C1 - C2)/(m2 - m1)
+y = m1*((C1 - C2)/(m2 - m1)) + C1
+disp(y,'y = ',x,'x = ')
+disp('Changing m2 from 2.01 to 2.005')
+m2 = 2.005
+x = (C1 - C2)/(m2 - m1)
+y = m1*((C1 - C2)/(m2 - m1)) + C1
+mprintf('\n x = %i \n y = %i \n From the above results we can see that for small change in m2 results in almost 100 percent change in the values of x and y.Therefore, the problem is absolutely ill-conditioned \n',x,y) \ No newline at end of file
diff --git a/243/CH4/EX4.17/4_17.sce b/243/CH4/EX4.17/4_17.sce
new file mode 100755
index 000000000..1fe588ab3
--- /dev/null
+++ b/243/CH4/EX4.17/4_17.sce
@@ -0,0 +1,4 @@
+//Example No. 4_17
+//Pg No. 83
+disp('Theoritical Problem')
+disp('For Details go to page no. 83') \ No newline at end of file
diff --git a/243/CH4/EX4.18/4_18.sce b/243/CH4/EX4.18/4_18.sce
new file mode 100755
index 000000000..9d4661ca3
--- /dev/null
+++ b/243/CH4/EX4.18/4_18.sce
@@ -0,0 +1,22 @@
+//Example No. 4_18
+//Difference of Square roots
+//Pg No. 84
+clear ; close ; clc ;
+
+x = 497.0 ;
+y = 496.0 ;
+sqrt_x = sqrt(497)
+sqrt_y = sqrt(496)
+nx = length( string( floor( sqrt_x ) ) )
+ny = length( string( floor( sqrt_y ) ) )
+sqrt_x = floor(sqrt_x*10^(4-nx))/10^(4-nx)
+sqrt_y = floor(sqrt_y*10^(4-ny))/10^(4-ny)
+z1 = sqrt_x - sqrt_y
+disp(z1,'z = sqrt(x) - sqrt(y)')
+z2 = ( x -y)/(sqrt_x + sqrt_y)
+if z2 < 0.1 then
+ z2 = z2*10^4
+ nz = length(string(floor(z2)))
+ z2 = floor(z2*10^(4-nz))/10^(8-nz)
+end
+disp( z2 , 'z = ( x-y )/( sqrt(x) + sqrt(y) )' ) \ No newline at end of file
diff --git a/243/CH4/EX4.19/4_19.sce b/243/CH4/EX4.19/4_19.sce
new file mode 100755
index 000000000..469910a78
--- /dev/null
+++ b/243/CH4/EX4.19/4_19.sce
@@ -0,0 +1,4 @@
+//Example No. 4_19
+//Pg No. 84
+disp('Theoritical Problem')
+disp('For Details go to page no. 84') \ No newline at end of file
diff --git a/243/CH4/EX4.2/4_02.sce b/243/CH4/EX4.2/4_02.sce
new file mode 100755
index 000000000..112a25fbf
--- /dev/null
+++ b/243/CH4/EX4.2/4_02.sce
@@ -0,0 +1,43 @@
+//Example No. 4_02
+//Accuracy of numbers
+//Pg No. 63
+clear ;close ;clc ;
+
+function n = sd(x)
+ nd = strindex(x,'.') //position of point
+ num = str2code(x)
+ if isempty(nd) & num(length(x)) == 0 then
+ mprintf('Accuracy is not specified\n')
+ n = 0 ;
+ else
+ if num(1)>= 1 & isempty(nd) then
+ n = length(x)
+ elseif num(1) >= 1 & ~isempty(nd) then
+ n = length(x) - 1
+ else
+ for i = 1:length(x)
+ if num(i) >= 1 & num(i) <= 9 then
+ break
+ end
+ end
+ n = length(x)- i + 1
+ end
+ end
+endfunction
+a = '95.763'
+na = sd(a)
+mprintf('%s has %i significant digits\n',a,na)
+b = '0.008472'
+nb = sd(b)
+mprintf('%s has %i significant digits.The leading or higher order zeros are only place holders\n',b,nb)
+c = '0.0456000'
+nc = sd(c)
+mprintf('%s has %i significant digits\n',c,nc)
+d = '36'
+nd = sd(d)
+mprintf('%s has %i significant digits\n',d,nd)
+e = '3600'
+sd(e)
+f = '3600.00'
+nf = sd(f)
+mprintf('%s has %i significant digits\n',f,nf) \ No newline at end of file
diff --git a/243/CH4/EX4.20/4_20.sce b/243/CH4/EX4.20/4_20.sce
new file mode 100755
index 000000000..71f1938bf
--- /dev/null
+++ b/243/CH4/EX4.20/4_20.sce
@@ -0,0 +1,4 @@
+//Example No. 4_20
+//Pg No. 85
+disp('Theoritical Problem')
+disp('For Details go to page no. 85') \ No newline at end of file
diff --git a/243/CH4/EX4.21/4_21.sce b/243/CH4/EX4.21/4_21.sce
new file mode 100755
index 000000000..7933b6738
--- /dev/null
+++ b/243/CH4/EX4.21/4_21.sce
@@ -0,0 +1,17 @@
+//Example 4_21
+//Pg No. 85
+clear ; close ; clc ;
+
+x = -10
+T_act(1) = 1
+T_trc(1) = 1
+e_x_cal = 1
+for i = 1:100
+ T_act(i+1) = T_act(i)*x/i
+ T_trc(i+1) = floor(T_act(i+1)*10^5)/10^5
+ TE(i) = abs(T_act(i+1)-T_trc(i+1))
+ e_x_cal = e_x_cal + T_trc(i+1)
+end
+e_x_act = exp(-10)
+disp(e_x_act,'actual e^x = ',e_x_cal,'calculated e^x using roundoff = ',sum(TE),'Truncation Error = ')
+disp('Here we can see the difference between calculated e^x and actual e^x this is due to trucation error (which is greater than final value of e^x ), so the roundoff error totally dominates the solution') \ No newline at end of file
diff --git a/243/CH4/EX4.3/4_03.sce b/243/CH4/EX4.3/4_03.sce
new file mode 100755
index 000000000..74c85ffca
--- /dev/null
+++ b/243/CH4/EX4.3/4_03.sce
@@ -0,0 +1,29 @@
+//Example No. 4_03
+//Pg No. 64
+clear ; close ; clc ;
+
+a = 0.1
+b = 0.4
+for i = 1:8
+ afrac(i) = floor(a*2)
+ a = a*2 - floor(a*2)
+ bfrac(i) = floor(b*2)
+ b = b*2 - floor(b*2)
+end
+afrac_s = '0' + '.' + strcat(string(afrac)) //string form binary equivalent of a i.e 0.1
+bfrac_s = '0' + '.' + strcat(string(bfrac))
+mprintf('\n 0.1_10 = %s \n 0.4_10 = %s \n ', afrac_s , bfrac_s)
+for j = 8:-1:1
+ summ(j) = afrac(j) + bfrac(j)
+ if summ(j) > 1 then
+ summ(j) = summ(j)-2
+ afrac(j-1) = afrac(j-1) + 1
+ end
+end
+summ_dec = 0
+for k = 8:-1:1
+ summ_dec = summ_dec + summ(k)
+ summ_dec = summ_dec*1/2
+end
+disp(summ_dec,'sum =')
+disp('Note : The answer should be 0.5, but it is not so.This is due to the error in conversion from decimal to binary form.') \ No newline at end of file
diff --git a/243/CH4/EX4.4/4_04.sce b/243/CH4/EX4.4/4_04.sce
new file mode 100755
index 000000000..df0b66d4c
--- /dev/null
+++ b/243/CH4/EX4.4/4_04.sce
@@ -0,0 +1,22 @@
+//Example No. 4_04
+//Rounding-Off
+//Pg No. 66
+clear ; close ; clc ;
+
+fx = 0.7526
+E =3
+gx = 0.835
+d = E - (-1)
+//Chopping Method
+Approx_x = fx*10^E
+Err = gx*10^(E-d)
+mprintf('\n Chooping Method : \n Approximate x = %.4f*10^%i \n Error = %.4f \n ',fx,E,Err)
+//Symmetric Method
+if gx >= 0.5 then
+ Err = (gx -1)*10^(-1)
+ Approx_x = (fx + 10^(-d))*10^E
+else
+ Approx_x = fx*10^E
+ Err = gx * 10^(E-d)
+end
+mprintf('\n Symmetric Rounding :\n Approximate x = %.4f*10^%i \n Error = %.4f \n ',fx + 10^(-d),E,Err)
diff --git a/243/CH4/EX4.5/4_05.sce b/243/CH4/EX4.5/4_05.sce
new file mode 100755
index 000000000..fdd54eea1
--- /dev/null
+++ b/243/CH4/EX4.5/4_05.sce
@@ -0,0 +1,17 @@
+//Example No. 4_05
+//Truncation Error
+//Pg No. 68
+clear ; close ; clc ;
+
+x = 1/5
+//When first three terms are used
+Trunc_err = x^3/factorial(3) + x^4/factorial(4) + x^5/factorial(5) + x^6/factorial(6)
+mprintf('\n a) When first three terms are used \n Truncation error = %.6E \n ',Trunc_err)
+
+//When four terms are used
+Trunc_err = x^4/factorial(4) + x^5/factorial(5) + x^6/factorial(6)
+mprintf('\n b) When first four terms are used \n Truncation error = %.6E \n ',Trunc_err)
+
+//When Five terms are used
+Trunc_err = x^5/factorial(5) + x^6/factorial(6)
+mprintf('\n c) When first five terms are used \n Truncation error = %.6E \n ',Trunc_err) \ No newline at end of file
diff --git a/243/CH4/EX4.6/4_06.sce b/243/CH4/EX4.6/4_06.sce
new file mode 100755
index 000000000..25e84871f
--- /dev/null
+++ b/243/CH4/EX4.6/4_06.sce
@@ -0,0 +1,17 @@
+//Example No. 4_06
+//Truncation Error
+//Pg No. 68
+clear ; close ; clc ;
+
+x = -1/5
+//When first three terms are used
+Trunc_err = x^3/factorial(3) + x^4/factorial(4) + x^5/factorial(5) + x^6/factorial(6)
+mprintf('\n a) When first three terms are used \n Truncation error = %.6E \n ',Trunc_err)
+
+//When four terms are used
+Trunc_err = x^4/factorial(4) + x^5/factorial(5) + x^6/factorial(6)
+mprintf('\n b) When first four terms are used \n Truncation error = %.6E \n ',Trunc_err)
+
+//When Five terms are used
+Trunc_err = x^5/factorial(5) + x^6/factorial(6)
+mprintf('\n c) When first five terms are used \n Truncation error = %.6E \n ',Trunc_err) \ No newline at end of file
diff --git a/243/CH4/EX4.7/4_07.sce b/243/CH4/EX4.7/4_07.sce
new file mode 100755
index 000000000..dcda386a7
--- /dev/null
+++ b/243/CH4/EX4.7/4_07.sce
@@ -0,0 +1,15 @@
+//Example No. 4_07
+//Absolute and Relative Errors
+//Pg No. 71
+clear ; close ; clc ;
+
+h_bu_t = 2945 ;
+h_bu_a = 2950 ;
+h_be_t = 30 ;
+h_be_a = 35 ;
+e1 = abs(h_bu_t - h_bu_a)
+e1_r = e1/h_bu_t
+e2 = abs(h_be_t - h_be_a)
+e2_r = e2/h_be_t
+mprintf('\n For Building : \n Absolute error, e1 = %i \n Relative error , e1_r = %.2f percent \n ',e1,e1_r*100)
+mprintf('\n For Beam : \n Absolute error, e2 = %i \n Relative error , e2_r = %.2G percent \n ',e2,e2_r*100) \ No newline at end of file
diff --git a/243/CH4/EX4.8/4_08.sce b/243/CH4/EX4.8/4_08.sce
new file mode 100755
index 000000000..c66af3743
--- /dev/null
+++ b/243/CH4/EX4.8/4_08.sce
@@ -0,0 +1,9 @@
+//Example No. 4_08
+//Machine Epsilon
+//Pg No. 72
+clear ; close ; clc ;
+
+deff('q = Q(p)','q = 1 + (p-1)*log10(2)' )
+p = 24
+q = Q(p)
+mprintf('q = %.1f \n We can say that the computer can store numbers with %i significant decimal digits \n ',q,q) \ No newline at end of file
diff --git a/243/CH4/EX4.9/4_09.sce b/243/CH4/EX4.9/4_09.sce
new file mode 100755
index 000000000..10e169837
--- /dev/null
+++ b/243/CH4/EX4.9/4_09.sce
@@ -0,0 +1,16 @@
+//Example No. 4_09
+//Propagation of Error
+//Pg No. 75
+clear ; close ; clc ;
+
+x = 0.1234*10^4
+y = 0.1232*10^4
+d = 4
+er_x = 10^(-d + 1)/2
+er_y = 10^(-d + 1)/2
+ex = x*er_x
+ey = y*er_y
+ez = abs(ex) + abs(ey)
+er_z = abs(ez)/abs(x-y)
+
+mprintf('\n |er_x| <= %.2f o/o\n |er_y| <= %.2fo/o \n ex = %.3f \n ey = %.3f \n |ez| = %.3f \n |er_z| = %.2fo/o \n',er_x *100,er_y*100,ex,ey,ez,er_z*100) \ No newline at end of file
diff --git a/243/CH6/EX6.02/6_02.sce b/243/CH6/EX6.02/6_02.sce
new file mode 100755
index 000000000..569f1b9be
--- /dev/null
+++ b/243/CH6/EX6.02/6_02.sce
@@ -0,0 +1,4 @@
+//Example No. 6_02
+//Pg No. 128
+disp('Theoritical Problem')
+disp('For Details go to page no. 128') \ No newline at end of file
diff --git a/243/CH6/EX6.06/6_06.sce b/243/CH6/EX6.06/6_06.sce
new file mode 100755
index 000000000..d4d9a87d0
--- /dev/null
+++ b/243/CH6/EX6.06/6_06.sce
@@ -0,0 +1,4 @@
+//Example No. 6_06
+//Pg No. 146
+disp('Theoritical Problem')
+disp('For Details go to page no. 146') \ No newline at end of file
diff --git a/243/CH6/EX6.1/6_01.sce b/243/CH6/EX6.1/6_01.sce
new file mode 100755
index 000000000..d0eb85816
--- /dev/null
+++ b/243/CH6/EX6.1/6_01.sce
@@ -0,0 +1,16 @@
+//Example No. 6_01
+//Possible Initial guess values for roots
+//Pg No. 126
+
+clear ; close ; clc ;
+
+A = [ 2 ; -8 ; 2 ; 12]; // Coefficients of x terms in the decreasing order of power
+n = size(A);
+x1 = -A(2)/A(1);
+disp(x1,'The largest possible root is x1 =')
+disp(x1,'No root can be larger than the value')
+
+x = sqrt((A(2)/A(1))^2 - 2*(A(3)/A(1))^2);
+
+printf('\n all real roots lie in the interval (-%f,%f)\n',x,x)
+disp('We can use these two points as initial guesses for the bracketing methods and one of them for open end methods') \ No newline at end of file
diff --git a/243/CH6/EX6.10/6_10.sce b/243/CH6/EX6.10/6_10.sce
new file mode 100755
index 000000000..c5a231c5a
--- /dev/null
+++ b/243/CH6/EX6.10/6_10.sce
@@ -0,0 +1,4 @@
+//Example No. 6_10
+//Pg No. 155
+disp('Theoritical Problem')
+disp('For Details go to page no. 155') \ No newline at end of file
diff --git a/243/CH6/EX6.11/6_11.sce b/243/CH6/EX6.11/6_11.sce
new file mode 100755
index 000000000..f4b5f984f
--- /dev/null
+++ b/243/CH6/EX6.11/6_11.sce
@@ -0,0 +1,28 @@
+//Example No. 6_11
+//Fixed point method
+//Pg No. 161
+clear ; close ; clc ;
+
+//Coefficients of polynomial in increasing order of power of x
+A = [ -2 1 1 ];
+B = [ 2 0 -1 ];
+gx = poly(B,'x','c');
+x(1) = 0 ;//initial guess x0 = 0
+for i = 2:10
+ x(i) = horner(gx,x(i-1));
+ printf('\n x%i = %f\n',i-1,x(i))
+ if (x(i)-x(i-1)) == 0 then
+ printf('\n%f is root of the equation,since x%i - x%i = 0 \n',x(i),i-1,i-2)
+ break
+ end
+end
+//Changing initial guess x0 = -1
+x(1) = -1 ;
+for i = 2:10
+ x(i) = horner(gx,x(i-1));
+ printf('\nx%i = %f\n',i-1,x(i))
+ if (x(i)-x(i-1)) == 0 then
+ printf('\n %f is root of the equation,since x%i - x%i = 0',x(i),i-1,i-2)
+ break
+ end
+end \ No newline at end of file
diff --git a/243/CH6/EX6.12/6_12.sce b/243/CH6/EX6.12/6_12.sce
new file mode 100755
index 000000000..1de1b8ff5
--- /dev/null
+++ b/243/CH6/EX6.12/6_12.sce
@@ -0,0 +1,30 @@
+//Example No. 6_12
+//Fixed point method
+//Pg No. 162
+clear ; close ; clc ;
+
+A = [ -5 0 1 ];
+funcprot(0);
+deff('x = g(x)','x = 5/x');
+x(1) = 1 ;
+printf('\n x0 = %f \n',x(1));
+for i = 2:5
+ x(i) = feval(x(i-1),g);
+ printf(' x%i = %f \n',i-1,x(i))
+end
+//Defining g(x) in different way
+deff('x = g(x)','x = x^2 + x - 5');
+x(1) = 0;
+printf('\n x0 = %f \n',x(1));
+for i = 2:5
+ x(i) = feval(x(i-1),g);
+ printf(' x%i = %f \n',i-1,x(i))
+end
+//Third form of g(x)
+deff('x = g(x)',' x = (x + 5/x)/2 ');
+x(1) = 1;
+printf('\n x0 = %f \n',x(1));
+for i = 2:7
+ x(i) = feval(x(i-1),g);
+ printf(' x%i = %f \n',i-1,x(i))
+end \ No newline at end of file
diff --git a/243/CH6/EX6.13/6_13.sce b/243/CH6/EX6.13/6_13.sce
new file mode 100755
index 000000000..2bea4f3ec
--- /dev/null
+++ b/243/CH6/EX6.13/6_13.sce
@@ -0,0 +1,16 @@
+//Example No. 6_13
+//Solving System of non-linear equations using FIXED POINT METHOD
+//Pg No. 169
+clear ; close ; clc ;
+
+printf(' x^2 - y^2 = 3 \n x^2 + x*y \n');
+deff('x = f(x,y)','x = y + 3/(x+y)') ;
+deff('y = g(x)','y = (6-x^2)/x') ;
+x(1) = 1 ;
+y(1) = 1 ;
+printf('\n x0 = %f \n y0 = %f \n',x(1),y(1));
+for i = 2:4
+ x(i) = feval(x(i-1),y(i-1),f);
+ y(i) = feval(x(i-1),g);
+ printf('\n x%i = %f \n y%i = %f \n',i-1,x(i),i-1,y(i));
+end \ No newline at end of file
diff --git a/243/CH6/EX6.14/6_14.sce b/243/CH6/EX6.14/6_14.sce
new file mode 100755
index 000000000..d9b43b5cc
--- /dev/null
+++ b/243/CH6/EX6.14/6_14.sce
@@ -0,0 +1,29 @@
+//Example No. 6_14
+//Solving System of Non-linear equations using Newton Raphson Method
+//Pg No. 172
+clear ; close ; clc ;
+
+printf('x^2 + x*y = 6 \n x^2 - y^2 = 3 \n');
+deff('f = F(x,y)','f = x^2 + x*y - 6' );
+deff('g = G(x,y)','g = x^2 - y^2 -3');
+deff('f1 = dFx(x,y)','f1 = 2*x + y');
+deff('f2 = dFy(x,y)','f2 = y');
+deff('g1 = dGx(x,y)','g1 = 2*x ');
+deff('g2 = dGy(x,y)','g2 = -2*y');
+x(1) = 1 ;
+y(1) = 1 ;
+
+for i = 2:3
+ Fval = feval(x(i-1),y(i-1),F);
+ Gval = feval(x(i-1),y(i-1),G);
+ f1 = feval(x(i-1),y(i-1),dFx);
+ f2 = feval(x(i-1),y(i-1),dFy);
+ g1 = feval(x(i-1),y(i-1),dGx);
+ g2 = feval(x(i-1),y(i-1),dGy);
+ D = f1*g2 - f2*g1 ;
+
+ x(i) = x(i-1) - (Fval*g2 - Gval*f2)/D ;
+ y(i) = y(i-1) - (Gval*f1 - Fval*g1)/D ;
+ printf('\n x%i = %f \n y%i = %f \n',i-1,x(i),i-1,y(i))
+
+end \ No newline at end of file
diff --git a/243/CH6/EX6.15/6_15.sce b/243/CH6/EX6.15/6_15.sce
new file mode 100755
index 000000000..097503f8e
--- /dev/null
+++ b/243/CH6/EX6.15/6_15.sce
@@ -0,0 +1,12 @@
+//Example No. 6_15
+//Synthetic Division
+//Pg No. 176
+clear ; close ; clc ;
+
+a = [-9 15 -7 1];
+b(4) = 0 ;
+for i = 3:-1:1
+ b(i) = a(i+1) + b(i+1)*3
+ printf('b%i = %f\n',i,b(i))
+end
+ disp(poly(b,'x','c'),'Thus the polynomial is') \ No newline at end of file
diff --git a/243/CH6/EX6.16/6_16.sce b/243/CH6/EX6.16/6_16.sce
new file mode 100755
index 000000000..b8aa023e4
--- /dev/null
+++ b/243/CH6/EX6.16/6_16.sce
@@ -0,0 +1,32 @@
+//Example No. 6_16
+//Quadratic factor of a polynomial using Bairstow's Method
+//Pg No. 187
+clear ; close ; clc ;
+
+a = [ 10 1 0 1];
+n = length(a);
+u = 1.8 ;
+v = -1 ;
+
+b(n) = a(n);
+b(n-1) = a(n-1) + u*b(n);
+c(n) = 0 ;
+c(n-1) = b(n);
+
+for i = n-2:-1:1
+ b(i) = a(i) + u*b(i+1) + v*b(i+2) ;
+ c(i) = b(i+1) + u*c(i+1) + v*c(i+2) ;
+end
+for i = n:-1:1
+ printf('b%i = %f \n',i-1,b(i))
+end
+for i = n:-1:1
+ printf('c%i = %f \n',i-1,b(i))
+end
+
+D = c(2)*c(2) - c(1)*c(3) ;
+du = -1*(b(2)*c(2) - c(1)*c(3))/D ;
+dv = -1*(b(1)*c(2) - b(2)*c(1))/D ;
+u = u + du ;
+v = v + du ;
+printf('\n D = %f \n du = %f \n dv = %f \n u = %f\n v = %f \n',D,du,dv,u,v) \ No newline at end of file
diff --git a/243/CH6/EX6.17/6_17.sce b/243/CH6/EX6.17/6_17.sce
new file mode 100755
index 000000000..fd56594f9
--- /dev/null
+++ b/243/CH6/EX6.17/6_17.sce
@@ -0,0 +1,39 @@
+//Example No. 6_17
+//Solving Leonard's equation using MULLER'S Method
+//Pg No. 197
+clear ; close ; clc ;
+
+deff('y = f(x)','y = x^3 + 2*x^2 + 10*x - 20') ;
+x1 = 0 ;
+x2 = 1 ;
+x3 = 2 ;
+for i = 1:10
+ f1 = feval(x1,f) ;
+ f2 = feval(x2,f) ;
+ f3 = feval(x3,f) ;
+ h1 = x1-x3 ;
+ h2 = x2-x3 ;
+ d1 = f1 - f3 ;
+ d2 = f2 - f3 ;
+ D = h1*h2*(h1-h2);
+ a0 = f3 ;
+ a1 = (d2*h1^2 - d1*h2^2)/D ;
+ a2 = (d1*h2 - d2*h1)/D ;
+ if abs(-2*a0/( a1 + sqrt( a1^2 - 4*a0*a2 ) )) < abs( -2*a0/( a1 - sqrt( a1^2 - 4*a0*a2 ) ))then
+ h4 = -2*a0/(a1 + sqrt(a1^2 - 4*a0*a2));
+ else
+ h4 = -2*a0/(a1 - sqrt(a1^2 - 4*a0*a2))
+ end
+ x4 = x3 + h4 ;
+ printf('\n x1 = %f\n x2 = %f\n x3 = %f\n f1 = %f\n f2 = %f\n f3 = %f\n h1 = %f\n h2 = %f\n d1 = %f\n d2 = %f\n a0 = %f\n a1 = %f\n a2 = %f\n h4 = %f\n x4 = %f\n ',x1,x2,x3,f1,f2,f3,h1,h2,d1,d2,a0,a1,a2,h4,x4) ;
+ relerr = abs((x4-x3)/x4);
+ if relerr <= 0.00001 then
+ printf('root of the polynomial is x4 = %f',x4);
+ break
+ end
+ x1 = x2 ;
+ x2 = x3 ;
+ x3 = x4 ;
+
+
+end \ No newline at end of file
diff --git a/243/CH6/EX6.3/6_03.sce b/243/CH6/EX6.3/6_03.sce
new file mode 100755
index 000000000..9eeb63185
--- /dev/null
+++ b/243/CH6/EX6.3/6_03.sce
@@ -0,0 +1,16 @@
+//Example No. 6_03
+//Evaluating Polynomial using Horner's rule
+//Pg No.
+clear ; close ; clc ;
+
+//Coefficients of x terms in the increasing order of power
+A = [ 6 ; 1 ; -4 ; 1];
+x = 2
+[n,c] = size(A) ;
+p(n) = A(n)
+disp(p(n), 'p(4) = ')
+for i = 1:n-1
+ p(n-i) = p(n-i+1)*x + A(n-i)
+ printf('\n p(%i)= %i\n',n-i,p(n-i))
+end
+mprintf('\n f(%i) = p(1) = %i',x,p(1)) \ No newline at end of file
diff --git a/243/CH6/EX6.4/6_04.sce b/243/CH6/EX6.4/6_04.sce
new file mode 100755
index 000000000..3d9ec11f2
--- /dev/null
+++ b/243/CH6/EX6.4/6_04.sce
@@ -0,0 +1,41 @@
+//Example No. 6_04
+//Root of a Equation Using Bisection Method
+//Pg No. 132
+
+clear ; close ; clc ;
+
+//Coefficients in increasing order of power of x starting from 0
+A = [-10 -4 1];
+disp('First finding the interval that contains a root,this can be done by using Eq 6.10')
+xmax = sqrt((A(2)/A(3))^2 - 2*(A(1)/A(3)))
+printf('\n Both the roots lie in the interval (-%i,%i) \n',xmax,xmax)
+x = -6:6
+p = poly(A,'x','c')
+fx = horner(p,x);
+for i = 1:12
+ if fx(1,i)*fx(1,i+1) < 0 then
+ break ;
+ end
+end
+printf('\n The root lies in the interval (%i,%i)\n',x(1,i),x(1,i+1))
+x1 = x(1,i);
+x2 = x(1,i+1);
+f1 = fx(1,i);
+f2 = fx(1,i+1);
+err = abs((x2-x1)/x2) ;
+while err > 0.0001
+x0 = (x1 + x2)/2 ;
+f0 = horner(p,x0);
+if f0*f1 < 0 then
+ x2 = x0
+ f2 = f0
+elseif f0*f2 < 0
+ x1 = x0
+ f1 = f0
+else
+ break
+end
+printf('\n the root lies in the interval (%f,%f)\n',x1,x2);
+err = abs((x2-x1)/x2);
+end
+printf('\nthe approximate root is %f\n',x0) \ No newline at end of file
diff --git a/243/CH6/EX6.5/6_05.sce b/243/CH6/EX6.5/6_05.sce
new file mode 100755
index 000000000..41fdec448
--- /dev/null
+++ b/243/CH6/EX6.5/6_05.sce
@@ -0,0 +1,23 @@
+//Example No. 6_05
+//False Position Method
+//Pg No. 139
+clear ; close ; clc ;
+
+//Coefficients of polynomial in increasing order of power of x
+A = [-2 -1 1];
+x1 = 1 ;
+x2 = 3 ;
+fx = poly(A,'x','c');
+for i = 1:15
+ printf('Iteration No. %i \n',i);
+ fx1 = horner(fx,x1);
+ fx2 = horner(fx,x2);
+ x0 = x1 - fx1*(x2-x1)/(fx2-fx1)
+ printf('x0 = %f \n',x0);
+ fx0 = horner(fx,x0);
+ if fx1*fx0 < 0 then
+ x2 = x0 ;
+ else
+ x1 = x0 ;
+ end
+end
diff --git a/243/CH6/EX6.7/6_07.sce b/243/CH6/EX6.7/6_07.sce
new file mode 100755
index 000000000..43c5c261b
--- /dev/null
+++ b/243/CH6/EX6.7/6_07.sce
@@ -0,0 +1,22 @@
+//Example No. 6_07
+//Root of the Equation using Newton Raphson Method
+//Pg No. 147
+clear ; close ; clc ;
+
+//Coefficients of polynomial in increasing order of power of x
+A = [ 2 -3 1];
+fx = poly(A,'x','c');
+dfx = derivat(fx);
+
+x(1) = 0 ;
+for i = 1:10
+ f(i) = horner(fx,x(i));
+ if f(i)~= 0 then
+ df(i) = horner(dfx,x(i));
+ x(i+1) = x(i) - f(i)/df(i) ;
+ printf('x%i = %f\n',i+1,x(i+1));
+ else
+ printf('Since f(%f) = 0, the root closer to the point x = 0 is %f \n',x(i),x(i) );
+ break
+ end
+end \ No newline at end of file
diff --git a/243/CH6/EX6.8/6_08.sce b/243/CH6/EX6.8/6_08.sce
new file mode 100755
index 000000000..4232a49ea
--- /dev/null
+++ b/243/CH6/EX6.8/6_08.sce
@@ -0,0 +1,19 @@
+//Example No. 6_08
+//Root of the Equation using Newton Raphson Method
+//Pg No. 151
+clear ; close ; clc ;
+//Coefficients of polynomial in increasing order of power of x
+A = [ 6 1 -4 1 ];
+fx = poly(A,'x','c');
+dfx = derivat(fx);
+
+x(1) = 5.0 ;
+for i = 1:6
+ f(i) = horner(fx,x(i));
+ if f(i)~= 0 then
+ df(i) = horner(dfx,x(i));
+ x(i+1) = x(i) - f(i)/df(i) ;
+ printf('x%i = %f\n',i+1,x(i+1));
+ end
+end
+disp('From the results we can see that number of correct digits approximately doubles with each iteration') \ No newline at end of file
diff --git a/243/CH6/EX6.9/6_09.sce b/243/CH6/EX6.9/6_09.sce
new file mode 100755
index 000000000..b6f7b9129
--- /dev/null
+++ b/243/CH6/EX6.9/6_09.sce
@@ -0,0 +1,20 @@
+//Example No. 6_09
+//Root of the equation using SECANT Method
+//Pg No. 153
+clear ; close ; clc ;
+
+//Coefficients of polynomial in increasing order of power of x
+A = [ -10 -4 1];
+x1 = 4 ;
+x2 = 2 ;
+fx = poly(A,'x','c')
+for i = 1:6
+ printf('\n For Iteration No. %i\n',i)
+ fx1 = horner(fx,x1);
+ fx2 = horner(fx,x2);
+ x3 = x2 - fx2*(x2-x1)/(fx2-fx1) ;
+ printf('\n x1 = %f\n x2 = %f \n fx1 = %f \n fx2 = %f \n x3 = %f \n',x1,x2,fx1,fx2,x3) ;
+ x1 = x2;
+ x2 = x3;
+end
+disp('This can be still continued further for accuracy') \ No newline at end of file
diff --git a/243/CH7/EX7.1/7_01.sce b/243/CH7/EX7.1/7_01.sce
new file mode 100755
index 000000000..3b1f6317f
--- /dev/null
+++ b/243/CH7/EX7.1/7_01.sce
@@ -0,0 +1,18 @@
+//Example No. 7_01
+//Elimination Process
+//Pg No. 211
+
+clear ; close ; clc ;
+
+A = [3 2 1 10; 2 3 2 14 ; 1 2 3 14];
+A(2,:) = A(2,:) - A(1,:)*A(2,1)/A(1,1)
+A(3,:) = A(3,:) - A(1,:)*A(3,1)/A(1,1)
+disp(A)
+
+A(3,:) = A(3,:) - A(2,:)*A(3,2)/A(2,2)
+disp(A)
+
+z = A(3,4)/A(3,3)
+y = (A(2,4) - A(2,3)*z)/A(2,2)
+x = (A(1,4) - A(1,2)*y - A(1,3)*z)/A(1,1)
+disp(x,'x = ',y,'y = ',z,'z = ') \ No newline at end of file
diff --git a/243/CH7/EX7.2/7_02.sce b/243/CH7/EX7.2/7_02.sce
new file mode 100755
index 000000000..0bff92095
--- /dev/null
+++ b/243/CH7/EX7.2/7_02.sce
@@ -0,0 +1,18 @@
+//Example No. 7_02
+//Basic Gauss Elimination
+//Pg No. 214
+clear ; close ; clc ;
+
+A = [ 3 6 1 ; 2 4 3 ; 1 3 2 ];
+B = [16 13 9];
+[ar1,ac1] = size(A);
+Aug = [3 6 1 16 ; 2 4 3 13 ; 1 3 2 9]
+for i = 2 : ar1
+ Aug(i,:) = Aug(i,:) - (Aug(i,1)/Aug(1,1))*Aug(1,:) ;
+end
+disp(Aug)
+disp('since Aug(2,2) = 0 elimination is not possible,so reordering the matrix')
+Aug = Aug( [ 1 3 2],:);
+disp(Aug)
+disp('Elimination is complete and by back substitution the solution is\n')
+disp('x3 = 1, x2 = 2 , x1 = 1 ') \ No newline at end of file
diff --git a/243/CH7/EX7.3/7_03.sce b/243/CH7/EX7.3/7_03.sce
new file mode 100755
index 000000000..62af26676
--- /dev/null
+++ b/243/CH7/EX7.3/7_03.sce
@@ -0,0 +1,31 @@
+//Example No. 7_03
+// Gauss Elimination using partial pivoting
+// Pg No. 220
+clear ; close ; clc ;
+
+A = [ 2 2 1 ; 4 2 3 ; 1 -1 1];
+B = [ 6 ; 4 ; 0 ];
+[ ar , ac ] = size(A);
+Aug = [ 2 2 1 6 ; 4 2 3 4 ; 1 -1 1 0 ];
+
+for i = 1 : ar-1
+ [ p , m ] = max(abs(Aug(i:ar,i)))
+ Aug(i:ar,:) = Aug([i+m-1 i+1:i+m-2 i i+m:ar],:);
+ disp(Aug)
+ for k = i+1 : ar
+ Aug(k,i:ar+1) = Aug(k,i:ar+1) - (Aug(k,i)/Aug(i,i))*Aug(i,i:ar+1);
+ end
+ disp(Aug)
+end
+
+//Back Substitution
+X(ar,1) = Aug(ar,ar+1)/Aug(ar,ar)
+for i = ar-1 : -1 : 1
+ X(i,1) = Aug(i,ar+1);
+ for j = ar : -1 : i+1
+ X(i,1) = X(i,1) - X(j,1)*Aug(i,j);
+ end
+ X(i,1) = X(i,1)/Aug(i,i);
+end
+
+printf('\n The solution can be obtained by back substitution \n x1 = %i \n x2 = %i \n x3 = %i \n',X(1,1),X(2,1),X(3,1))
diff --git a/243/CH7/EX7.4/7_04.sce b/243/CH7/EX7.4/7_04.sce
new file mode 100755
index 000000000..f72e01b88
--- /dev/null
+++ b/243/CH7/EX7.4/7_04.sce
@@ -0,0 +1,21 @@
+//Example No. 7_04
+//Gauss Jordan Elimination
+//Pg No. 228
+clear ; close ; clc ;
+
+A = [ 2 4 -6 ; 1 3 1 ; 2 -4 -2 ];
+B = [ -8 ; 10 ; -12 ];
+[ar,ac] = size(A);
+Aug = [ 2 4 -6 -8 ; 1 3 1 10 ; 2 -4 -2 -12 ];
+disp(Aug)
+
+for i = 1 : ar
+ Aug(i,i:ar+1) = Aug(i,i:ar+1)/Aug(i,i) ;
+ disp(Aug)
+ for k = 1 : ar
+ if k ~= i then
+ Aug(k,i:ar+1) = Aug(k,i:ar+1) - Aug(k,i)*Aug(i,i:ar+1);
+ end
+ end
+ disp(Aug)
+end
diff --git a/243/CH7/EX7.5/7_05.sce b/243/CH7/EX7.5/7_05.sce
new file mode 100755
index 000000000..26895b8c7
--- /dev/null
+++ b/243/CH7/EX7.5/7_05.sce
@@ -0,0 +1,59 @@
+//Example No. 7_05
+//DoLittle LU Decomposition
+//Pg No. 234
+
+clear ; close ; clc ;
+
+A = [ 3 2 1 ; 2 3 2 ; 1 2 3 ];
+B = [ 10 ; 14 ; 14 ];
+[n , n] = size(A);
+
+for i = 2:n
+ U(1,:) = A(1,:);
+ L(i,i) = 1 ;
+ if i ~= 1 then
+ L(i,1) = A(i,1)/U(1,1);
+ end
+end
+
+for j = 2:n
+ for i = 2:n
+
+ if i <= j then
+ U(i,j) = A(i,j);
+ for k = 1:i-1
+ U(i,j) = U(i,j) - L(i,k)*U(k,j);
+ end
+ printf('\nU(%i,%i) = %f \n',i,j,U(i,j))
+
+ else
+ L(i,j) = A(i,j)
+ for k = 1:j-1
+ L(i,j) = L(i,j) - L(i,k)*U(k,j);
+ end
+ L(i,j) = L(i,j)/U(j,j) ;
+ printf('\n L(%i,%i) = %f \n',i,j,L(i,j))
+ end
+ end
+end
+disp(U,'U = ')
+disp(L,'L = ')
+
+//Forward Substitution
+for i = 1:n
+ z(i,1) = B(i,1);
+ for j = 1:i-1
+ z(i,1) = z(i,1) - L(i,j)*z(j,1);
+ end
+ printf('\n z(%i) = %f \n',i,z(i,1))
+end
+
+//Back Substitution
+for i = n : -1 : 1
+ x(i,1) = z(i,1);
+ for j = n : -1 : i+1
+ x(i,1) = x(i,1) - U(i,j)*x(j,1);
+ end
+ x(i,1) = x(i,1)/U(i,i);
+ printf('\n x(%i) = %f \n',i,x(i,1))
+end \ No newline at end of file
diff --git a/243/CH7/EX7.6/7_06.sce b/243/CH7/EX7.6/7_06.sce
new file mode 100755
index 000000000..906af68f6
--- /dev/null
+++ b/243/CH7/EX7.6/7_06.sce
@@ -0,0 +1,27 @@
+//Example No. 7_06
+//Cholesky's Factorisation
+//Pg No. 242
+
+clear ; close ; clc ;
+
+A = [ 1 2 3 ; 2 8 22 ; 3 22 82 ];
+[n,n] = size(A);
+
+for i = 1:n
+ for j = 1:n
+ if i == j then
+ U(i,i) = A(i,i)
+ for k = 1:i-1
+ U(i,i) = U(i,i)-U(k,i)^2 ;
+ end
+ U(i,i) = sqrt(U(i,i));
+ elseif i < j
+ U(i,j) = A(i,j)
+ for k = 1:i-1
+ U(i,j) = U(i,j) - U(k,i)*U(k,j);
+ end
+ U(i,j) = U(i,j)/U(i,i)
+ end
+ end
+end
+disp(U) \ No newline at end of file
diff --git a/243/CH7/EX7.7/7_07.sce b/243/CH7/EX7.7/7_07.sce
new file mode 100755
index 000000000..1fafd350f
--- /dev/null
+++ b/243/CH7/EX7.7/7_07.sce
@@ -0,0 +1,17 @@
+//Example No. 7_07
+//Ill-Conditioned Systems
+//Pg No. 245
+
+clear ; close ; clc ;
+
+A = [ 2 1 ; 2.001 1];
+B = [ 25 ; 25.01 ];
+x(1) = (25 - 25.01)/(2 - 2.001);
+x(2) = (25.01*2 - 25*2.001)/(2*1 - 2.001*1);
+printf('\n x(1) = %f \n x(2) = %f \n',x(1),x(2))
+x(1) = (25 - 25.01)/(2 - 2.0005);
+x(2) = (25.01*2 - 25*2.0005)/(2*1 - 2.0005*1);
+printf('\n x(1) = %f \n x(2) = %f \n',x(1),x(2))
+r = A*x-B
+disp(x)
+disp(r)
diff --git a/243/CH8/EX8.1/8_01.sce b/243/CH8/EX8.1/8_01.sce
new file mode 100755
index 000000000..fdbb6f557
--- /dev/null
+++ b/243/CH8/EX8.1/8_01.sce
@@ -0,0 +1,28 @@
+//Example No. 8_01
+//Gauss Jacobi
+//Page No. 254
+clear ; close ; clc ;
+
+A = [ 2 1 1 ; 3 5 2 ; 2 1 4];
+B = [ 5 ; 15 ; 8];
+x1old = 0 ,x2old = 0 , x3old = 0 //intial assumption of x1,x2 & x3
+
+disp('x1 = (5 - x2 - x3)/2 ')
+disp('x2 = (15 - 3x1 - 2x3)/5 ')
+disp('x3 = (8 - 2x1 - x2)/4')
+
+for i = 1:4
+ printf('\n Iteration Number : %d\n',i)
+
+ x1 = (5 - x2old - x3old)/2 ;
+ x2 = (15 - 3*x1old - 2*x3old)/5 ;
+ x3 = (8 - 2*x1old - x2old)/4 ;
+
+ printf(' \n x1 = %f\n x2 = %f\n x3 = %f\n',x1,x2,x3)
+
+ x1old = x1;
+ x2old = x2;
+ x3old = x3;
+
+end
+
diff --git a/243/CH8/EX8.2/8_02.sce b/243/CH8/EX8.2/8_02.sce
new file mode 100755
index 000000000..58b60acec
--- /dev/null
+++ b/243/CH8/EX8.2/8_02.sce
@@ -0,0 +1,27 @@
+//Example No. 8_02
+//Gauss Seidel
+//Page No.261
+clear ; close ; clc ;
+
+A = [ 2 1 1 ; 3 5 2 ; 2 1 4];
+B = [ 5 ; 15 ; 8];
+x1old = 0 ,x2old = 0 , x3old = 0 //intial assumption
+
+disp('(x1 = 5 - x2 - x3)/2 ')
+disp('(x2 = 15 - 3x1 - 2x3)/5 ')
+disp('(x3 = 8 - 2x1 - x2)/4')
+
+for i = 1:2
+
+ printf('\n Iteration Number : %d',i)
+
+ x1 = (5 - x2old - x3old)/2 ;
+ x1old = x1;
+ x2 = (15 - 3*x1old - 2*x3old)/5 ;
+ x2old = x2;
+ x3 = (8 - 2*x1old - x2old)/4 ;
+ x3old = x3;
+
+ printf(' \n x1 = %f\n x2 = %f\n x3 = %f\n',x1,x2,x3)
+
+end
diff --git a/243/CH8/EX8.3/8_03.sce b/243/CH8/EX8.3/8_03.sce
new file mode 100755
index 000000000..7a39737f2
--- /dev/null
+++ b/243/CH8/EX8.3/8_03.sce
@@ -0,0 +1,40 @@
+//Example No. 8_03
+//Gauss Seidel
+//page no. 269
+clear ; close ; clc ;
+
+A = [ 3 1 ; 1 -3]
+B = [ 5 ; 5 ]
+
+disp('Using a matrix to display the results after each iteration, first row represents initial assumption')
+X(1,1) = 0 , X(1,2) = 0 ;//initial assumption
+
+maxit = 1000;//Maximum number of iterations
+err = 0.0003 ;
+
+disp('x1 = (5-x2)/3');
+disp('x2 = (x1 - 5)/3');
+
+for i = 2:maxit
+
+ X(i,1) = (5 - X(i-1,2))/3 ;
+ X(i,2) = (X(i,1) - 5)/3 ;
+
+ //Error Calculations
+ err1 =abs((X(i,1) - X(i-1,1))/X(i,1))
+ err2 =abs((X(i,2)- X(i-1,2))/X(i,2))
+
+ //Terminating Condition
+ if err >= err1 & err >= err2 then
+ printf('The system converges to the solution ( %f , %f ) in %d iterations\n',X(i,1),X(i,2),i-1 )
+ break
+ end
+
+end
+//calcution of true error i.e. difference between final result and results from each iteration
+trueerr1 = abs(X(:,1) - X(i,1)*ones(i,1)) ;
+trueerr2 = abs(X(:,2) - X(i,2)*ones(i,1)) ;
+
+//displaying final results
+D = [ X trueerr1 trueerr2] ;
+disp(D) \ No newline at end of file
diff --git a/243/CH8/EX8.4/8_04.sce b/243/CH8/EX8.4/8_04.sce
new file mode 100755
index 000000000..35facda7b
--- /dev/null
+++ b/243/CH8/EX8.4/8_04.sce
@@ -0,0 +1,23 @@
+//Example No. 8_04
+//Gauss Seidel
+//Page No.261
+clear ; close ; clc ;
+
+A = [ 1 -3 ; 3 1 ];
+B = [ 5 ; 5 ];
+x1old = 0 ,x2old = 0 //intial assumption
+
+disp('x1 = 5 + 3*x2 ')
+disp('x2 = 5 - 3*x1 ')
+
+for i = 1:3
+
+ x1 = 5 + 3*x2old ;
+ x1old = x1;
+ x2 = 5 - 3*x1old ;
+ x2old = x2;
+
+ printf('\n Iteration : %i x1 = %i and x2 = %i\n',i,x1,x2)
+
+end
+disp('It is clear that the process do not converge towards the solution, rather it diverges.')
diff --git a/243/CH9/EX9.1/9_01.sce b/243/CH9/EX9.1/9_01.sce
new file mode 100755
index 000000000..505bc3638
--- /dev/null
+++ b/243/CH9/EX9.1/9_01.sce
@@ -0,0 +1,14 @@
+//Example No. 9_01
+//Pg No.277
+clear ; close ; clc ;
+
+printf('solving linear equations \n a0 + 100a1 = 3/7 \n a0 + 101a1 = -4/7 \n we get,\n');
+C = [ 1 100 ; 1 101]
+p = [ 3/7 ; -4/7]
+a = C\p
+printf('\n a0 = %f \n a1 = %f \n',a(1),a(2));
+x = poly(0,'x') ;
+px = a(1) + a(2)*x
+p100 = horner(px,100)
+p101 = horner(px,101)
+printf('\n p(100) = %f \n p(101) = %f\n',p100,p101) \ No newline at end of file
diff --git a/243/CH9/EX9.10/9_10.sce b/243/CH9/EX9.10/9_10.sce
new file mode 100755
index 000000000..5b7b2d9c3
--- /dev/null
+++ b/243/CH9/EX9.10/9_10.sce
@@ -0,0 +1,56 @@
+//Example No. 9_10
+//Splines
+//Pg No. 301
+clear ; close ; clc ;
+
+x = poly(0,'x');
+function isitspline(f1,f2,f3,x0,x1,x2,x3)
+ n1 = degree(f1),n2 = degree(f2),n3 = degree(f3)
+ n = max(n1,n2,n3)
+ f1_x1 = horner(f1,x1)
+ f2_x1 = horner(f2,x1)
+ f2_x2 = horner(f2,x2)
+ f3_x2 = horner(f3,x2)
+ if n ==1 & f1_x1 == f2_x1 & f2_x2 == f3_x2 then
+ printf('The piecewise polynomials are continuous and f(x) is a linear spline')
+ elseif f1_x1 == f2_x1 & f2_x2 == f3_x2
+ for i = 1:n-1
+ df1 = derivat(f1)
+ df2 = derivat(f2)
+ df3 = derivat(f3)
+ df1_x1 = horner(df1,x1)
+ df2_x1 = horner(df2,x1)
+ df2_x2 = horner(df2,x2)
+ df3_x2 = horner(df3,x2)
+ f1 = df1, f2 = df2, f3 = df3
+ if df1_x1 ~= df2_x1 | df2_x2 ~= df3_x2 then
+ printf('The %ith derivative of polynomial is not continuours',i)
+ break
+ end
+ end
+ if i == n-1 & df1_x1 == df2_x1 & df2_x2 == df3_x2 then
+ printf('The polynomial is continuous and its derivatives from 1 to %i are continuous, f(x) is a %ith degree polynomial',i,i+1)
+ end
+ else
+ printf('The polynomial is not continuous')
+ end
+
+endfunction
+n = 4 , x0 = -1 , x1 = 0, x2 = 1 , x3 = 2
+f1 = x+1 ;
+f2 = 2*x + 1 ;
+f3 = 4 - x ;
+disp('case 1')
+isitspline(f1,f2,f3,x0,x1,x2,x3)
+n = 4, x0 = 0 , x1= 1 , x2 = 2 , x3 = 3
+f1 = x^2 + 1 ;
+f2 = 2*x^2 ;
+f3 = 5*x - 2 ;
+disp('case 2')
+isitspline(f1,f2,f3,x0,x1,x2,x3)
+n = 4, x0 = 0, x1 = 1, x2 = 2, x3 = 3
+f1 = x,
+f2 = x^2 - x + 1,
+f3 = 3*x - 3
+disp('case 3')
+isitspline(f1,f2,f3,x0,x1,x2,x3)
diff --git a/243/CH9/EX9.11/9_11.sce b/243/CH9/EX9.11/9_11.sce
new file mode 100755
index 000000000..23dd044b3
--- /dev/null
+++ b/243/CH9/EX9.11/9_11.sce
@@ -0,0 +1,28 @@
+//Example No. 9_11
+//Cubic Spline Interpolation
+//Pg No. 306
+clear ; close ; clc ;
+
+X = [ 4 9 16]
+Fx = [ 2 3 4]
+n = length(X)
+h = diff(X)
+disp(h)
+x = poly(0,'x');
+A(1) = 0;
+A(n) = 0;
+
+//Since we do not know only a1 = A(2) we just have one equation which can be solved directly without solving tridiagonal matrix
+A(2) = 6*( ( Fx(3) - Fx(2) )/h(2) - ( Fx(2) - Fx(1) )/h(1) )/( 2*( h(1) + h(2) ) );
+disp(A(2),'a1 = ');
+xuk = 7;
+for i = 1:n-1
+ if xuk <= X(i+1) then
+ break;
+ end
+end
+u = x*ones(1,2) - X(i:i+1)
+s = ( A(2)*( u(i)^3 - ( h(i)^2 )*u(i))/6*h(i) ) + ( Fx(i+1)*u(i)- Fx(i)*u(i+1) )/h(i);
+disp(s,'s(x) = ');
+s_7 = horner(s,xuk);
+disp(s_7,'s(7)') \ No newline at end of file
diff --git a/243/CH9/EX9.12/9_12.sce b/243/CH9/EX9.12/9_12.sce
new file mode 100755
index 000000000..f37405a6a
--- /dev/null
+++ b/243/CH9/EX9.12/9_12.sce
@@ -0,0 +1,36 @@
+//Example No. 9_12
+//Cubic Spline Interpolation
+//Pg No. 313
+clear ; close ;clc ;
+
+X = 1:4 ;
+Fx = [ 0.5 0.3333 0.25 0.2]
+n = length(X)
+h = diff(X)
+disp(h)
+x = poly(0,'x');
+A(1) = 0;
+A(n) = 0;
+//Forming Tridiagonal Matrix
+//take make diagonal below main diagonal be 1 , main diagonal is 2 and diagonal above main diagonal is 3
+diag1 = h(2:n-2);
+diag2 = 2*(h(1:n-2)+h(2:n-1));
+diag3 = h(2:n-2);
+TridiagMat = diag(diag1,-1)+diag(diag2)+diag(diag3,1)
+disp(TridiagMat);
+D = diff(Fx);
+D = 6*diff(D./h);
+disp(D)
+A(2:n-1) = TridiagMat\D'
+disp(A)
+xuk = 2.5;
+for i = 1:n-1
+ if xuk <= X(i+1) then
+ break;
+ end
+end
+u = x*ones(1,2) - X(i:i+1)
+s = ( A(i)*( h(i+1)^2*u(2) - u(2)^2 )/( 6*h(i+1) ) ) + ( A(i+1)*( u(1)^3 - ( h(i)^2 )*u(1))/6*h(i) ) + ( Fx(i+1)*u(1)- Fx(i)*u(2) )/h(i);
+disp(s,'s(x) = ');
+s2_5 = horner(s,xuk);
+disp(s2_5,'s(2.5)') \ No newline at end of file
diff --git a/243/CH9/EX9.2/9_02.sce b/243/CH9/EX9.2/9_02.sce
new file mode 100755
index 000000000..8ae998e3f
--- /dev/null
+++ b/243/CH9/EX9.2/9_02.sce
@@ -0,0 +1,13 @@
+//Example No. 9_02
+//Page No. 278
+clear ; close ; clc ;
+
+C = [ 1 100-100 ; 1 101-100]
+p = [ 3/7 ; -4/7]
+a = C\p
+printf('\n a0 = %f \n a1 = %f \n',a(1),a(2));
+x = poly(0,'x') ;
+px = a(1) + a(2)*(x - 100)
+p100 = horner(px,100)
+p101 = horner(px,101)
+printf('\n p(100) = %f \n p(101) = %f\n',p100,p101) \ No newline at end of file
diff --git a/243/CH9/EX9.3/9_03.sce b/243/CH9/EX9.3/9_03.sce
new file mode 100755
index 000000000..01cb757b6
--- /dev/null
+++ b/243/CH9/EX9.3/9_03.sce
@@ -0,0 +1,26 @@
+//Example No. 9_03
+//Page No. 280
+clear ; close ; clc ;
+
+x = 1:5
+f = [1 1.4142 1.7321 2 2.2361]
+n = 2.5
+for i = 1:5
+ if n <= x(i) then
+ break ;
+ end
+end
+printf('%f lies between points %i and %i',n,x(i-1),x(i))
+f2_5 = f(i-1) + ( n - x(i-1) )*( f(i) - f(i-1) )/( x(i) - x(i-1) )
+err1 = 1.5811 - f2_5
+disp(f2_5,'f(2.5) = ')
+disp(err1,'error1 = ')
+disp('The correct answer is 1.5811.The difference between results is due to use of a linear model to a nonlinear use')
+disp('repeating the procedure using x1 = 2 and x2 = 4')
+x1 = 2
+x2 = 4
+f2_5 = f(x1) + ( 2.5 - x1 )*( f(x2) - f(x1) )/( x2 - x1 )
+err2 = 1.5811 - f2_5
+disp(err2,'error2 = ')
+disp(f2_5,'f(2.5) = ')
+disp('NOTE- The increase in error due to the increase in the interval between the interpolating data') \ No newline at end of file
diff --git a/243/CH9/EX9.4/9_04.sce b/243/CH9/EX9.4/9_04.sce
new file mode 100755
index 000000000..336ff508c
--- /dev/null
+++ b/243/CH9/EX9.4/9_04.sce
@@ -0,0 +1,32 @@
+//Example No. 9_04
+//Lagrange Interpolation- Second order
+//Pg No. 282
+clear ; close ; clc ;
+
+X = [ 1 2 3 4 5]
+Fx = [ 1 1.4142 1.7321 2 2.2361];
+X = X(2:4)
+Fx = Fx(2:4)
+x0 = 2.5
+x = poly(0,'x')
+p = 0
+for i = 1:3
+ L(i) = 1
+ for j = 1:3
+ if j == i then
+ continue ;
+ else
+ L(i) = L(i)*( x - X(j) )/( X(i) - X(j) ) ;
+ end
+ end
+ p = p + Fx(i)*L(i)
+end
+L0 = horner(L(1),2.5) ;
+L1 = horner(L(2),2.5) ;
+L2 = horner(L(3),2.5) ;
+p2_5 = horner(p,2.5) ;
+printf('For x = 2.5 we have,\n L0(2.5) = %f \n L1(2.5) = %f \n L2(2.5) = %f \n p(2.5) = %f \n',L0,L1,L2,p2_5)
+
+err = sqrt(2.5) - p2_5 ;
+printf('The error is %f',err);
+
diff --git a/243/CH9/EX9.5/9_05.sce b/243/CH9/EX9.5/9_05.sce
new file mode 100755
index 000000000..d14e7cd8b
--- /dev/null
+++ b/243/CH9/EX9.5/9_05.sce
@@ -0,0 +1,34 @@
+//Example No. 9_05
+//Lagrange Interpolation
+//Pg No. 283
+clear ; close ; clc ;
+
+i = [ 0 1 2 3 ]
+X = [ 0 1 2 3 ]
+Fx = [ 0 1.7183 6.3891 19.0855 ]
+x = poly(0,'x');
+n = 3 //order of lagrange polynomial
+p = 0
+for i = 1:n+1
+ L(i) = 1
+ for j = 1:n+1
+ if j == i then
+ continue ;
+ else
+ L(i) = L(i)*( x - X(j) )/( X(i) - X(j) ) ;
+ end
+ end
+ p = p + Fx(i)*L(i)
+end
+disp("The Lagrange basis polynomials are")
+for i = 1:4
+ disp(string(L(i)))
+end
+disp("The interpolation polynomial is ")
+disp(string(p))
+disp('The interpolation value at x = 1.5 is ' )
+p1_5 = horner(p,1.5);
+e1_5 = p1_5 + 1 ;
+disp(e1_5,'e^1.5 = ',p1_5);
+
+
diff --git a/243/CH9/EX9.6/9_06.sce b/243/CH9/EX9.6/9_06.sce
new file mode 100755
index 000000000..2f8f5e0ce
--- /dev/null
+++ b/243/CH9/EX9.6/9_06.sce
@@ -0,0 +1,25 @@
+//Example No. 9_06
+//Newton Interpolation - Second order
+//Pg No. 288
+clear ; close ; clc ;
+
+i = [ 0 1 2 3]
+X = 1:4
+Fx = [ 0 0.3010 0.4771 0.6021]
+X = 1:3
+Fx = Fx(1:3)
+x = poly(0,'x');
+A = Fx'
+for i = 2:3
+ for j = 1:4-i
+ A(j,i) = ( A(j+1,i-1)-A(j,i-1) )/(X(j+i-1)-X(j)) ;
+ end
+end
+printf('The coefficients of the polynomial are,\n a0 = %.4G \n a1 = %.4G \n a2 = %.4G \n',A(1,1),A(1,2),A(1,3))
+p = A(1,1);
+for i = 2:3
+ p = p +A(1,i)* prod(x*ones(1,i-1) - X(1:i-1));
+end
+disp(string(p))
+p2_5 = horner(p,2.5)
+printf('p(2.5) = %.4G \n',p2_5) \ No newline at end of file
diff --git a/243/CH9/EX9.7/9_07.sce b/243/CH9/EX9.7/9_07.sce
new file mode 100755
index 000000000..1468a2221
--- /dev/null
+++ b/243/CH9/EX9.7/9_07.sce
@@ -0,0 +1,24 @@
+//Example No. 9_07
+//Newton Divided Difference Interpolation
+//Pg No. 291
+clear ; close ; clc ;
+
+i = 0:4
+X = 1:5
+Fx = [ 0 7 26 63 124];
+x = poly(0,'x');
+A = [ i' X' Fx']
+for i = 4:7
+ for j = 1:8-i
+ A(j,i) = ( A(j+1,i-1)-A(j,i-1) )/(X(j+i-3)-X(j)) ;
+ end
+end
+disp(A)
+p = A(1,3);
+p1_5(1) = p ;
+for i = 4:7
+ p = p +A(1,i)* prod(x*ones(1,i-3) - X(1:i-3));
+ p1_5(i-2) = horner(p,1.5);
+end
+printf('p0(1.5) = %f \n p1(1.5) = %f \n p2(1.5) = %f \n p3(1.5) = %f \n p4(1.5) = %f \n',p1_5(1),p1_5(2),p1_5(3),p1_5(4),p1_5(5));
+disp(p1_5(5),'The function value at x = 1.5 is')
diff --git a/243/CH9/EX9.8/9_08.sce b/243/CH9/EX9.8/9_08.sce
new file mode 100755
index 000000000..58cc2f790
--- /dev/null
+++ b/243/CH9/EX9.8/9_08.sce
@@ -0,0 +1,24 @@
+//Example No. 9_08
+//Newton-Gregory forward difference formula
+//Pg No. 297
+clear ; close ; clc ;
+
+X = [ 10 20 30 40 50]
+Fx = [ 0.1736 0.3420 0.5000 0.6428 0.7660]
+x = poly(0,'x');
+A = [X' Fx'];
+for i = 3:6
+ A(1:7-i,i) = diff(A(1:8-i,i-1))
+end
+disp(A)
+x0 = X(1);
+h = X(2) - X(1) ;
+x1 = 25
+s = (x1 - x0)/h ;
+p(1) = Fx(1);
+for j = 1:4
+ p(j+1) = p(j) + prod(s*ones(1,j)-[0:j-1])*A(1,j+2)/factorial(j)
+end
+printf('p1(s) = %.4G \n p2(s) = %.4G \n p3(s) = %.4G \n p4(s) = %.4G \n',p(2),p(3),p(4),p(5))
+printf(' Thus sin(%d) = %.4G \n ',x1,p(5))
+
diff --git a/243/CH9/EX9.9/9_09.sce b/243/CH9/EX9.9/9_09.sce
new file mode 100755
index 000000000..29bc54578
--- /dev/null
+++ b/243/CH9/EX9.9/9_09.sce
@@ -0,0 +1,24 @@
+//Example No. 9_09
+//Newton Backward difference formula
+//Pg No. 299
+clear ;close ;clc ;
+
+X = [ 10 20 30 40 50]
+Fx = [ 0.1736 0.3420 0.5000 0.6428 0.7660]
+x = poly(0,'x');
+A = [X' Fx'];
+for i = 3:6
+ A(i-1:5,i) = diff(A(i-2:5,i-1))
+end
+disp(A);
+xn = X(5);
+h = 10 ;
+xuk = 25;
+s = (xuk - xn)/h ;
+disp(s,'s = ');
+p(1) = Fx(5)
+for j = 1:4
+ p(j+1) = p(j) + prod(s*ones(1,j)-[0:j-1])*A(5,j+2)/factorial(j)
+end
+printf('\n\n p1(s) = %.4G \n p2(s) = %.4G \n p3(s) = %.4G \n p4(s) = %.4G \n',p(2),p(3),p(4),p(5))
+printf(' Thus sin(%d) = %.4G \n ',xuk,p(5))