summaryrefslogtreecommitdiff
path: root/2417/CH9/EX9.4/Ex9_4.sce
diff options
context:
space:
mode:
Diffstat (limited to '2417/CH9/EX9.4/Ex9_4.sce')
-rwxr-xr-x2417/CH9/EX9.4/Ex9_4.sce52
1 files changed, 52 insertions, 0 deletions
diff --git a/2417/CH9/EX9.4/Ex9_4.sce b/2417/CH9/EX9.4/Ex9_4.sce
new file mode 100755
index 000000000..85018f7d8
--- /dev/null
+++ b/2417/CH9/EX9.4/Ex9_4.sce
@@ -0,0 +1,52 @@
+//scilab 5.4.1
+clear;
+clc;
+printf("\t\t\tProblem Number 9.4\n\n\n");
+// Chapter 9 : Gas Power Cycles
+// Problem 9.4 (page no. 465)
+// Solution
+
+//For an Otto cycle,
+rc=7; //Compression Ratio Rc=v2/v3
+q=50; //Unit:Btu/lbm //Heat added
+p2=14.7; //Unit:psia //pressure at point 2
+T2=60+460; //temperatures converted to absolute temperatures; //Unit:R
+cp=0.24; //Unit:Btu/(lbm*R) //Specific heat constant for constant pressure process
+cv=0.171; //Unit:Btu/(lbm*R) //Specific heat constant for constant volume process
+R=53.3; //Unit:ft*lbf/lbm*R //constant of proportionality
+k=1.4; //It is apparent incerease in compression ratio yields an increased cycle efficiency
+//Refering to figure 9.9,
+//At (2),we need v2.
+//p2*v2=R*T2
+v2=(R*T2)/(p2*144); //Unit:ft^3/lbm //1ft^2=144 in^2 //specific volume at point 2
+printf("At point (2),\nspecific volume v2=%f ft^3/lbm\n\n",v2);
+//For The isentropic path (2)&(3),p3*v3^k=p2*v2^k,so
+//So,p3=p2*(v2/v3)^k;
+p3=p2*rc^k; //Unit:psia //pressure at point 3
+printf("At path(2)&(3)\n");
+printf("pressure p3=%f psia\n",p3);
+v3=v2/rc; //Unit:ft^3/lbm //specific volume at point 3
+printf("specific volume v3=%f ft^3/lbm\n",v3);
+T3=(p3*v3*144)/R; //Unit:R //1ft^2=144 in^2 //temperature at point 3
+printf("temperature T3=%f R\n\n",T3);
+printf("At point(4),\n");
+//To obtain the values at (4),we note
+v4=v3; //Unit:ft^3/lbm //specific volume at point 4
+printf("specific volume v4=%f ft^3/lbm\n",v4);
+//qin=cv*(T4-T3)
+T4=T3+(q/cv); //Unit:R //temperature at point 4
+printf("temperature T4=%f R\n",T4);
+//For p4,
+p4=(R*T4)/(144*v4); //Unit:psia //1ft^2=144 in^2 //pressure at point 4
+printf("pressure p4=%f psia\n\n",p4);
+//The last point has the same specific volume as (2),giving
+printf("At last point,\n");
+v5=v2; //Unit:ft^3/lbm //specific volume at point 5
+printf("specific volume v5=%f ft^3/lbm\n",v5);
+//The isentropic path equation,p5*v5^k=p4*v4^k,so
+p5=p4*(v4/v5)^k; //Unit:psia //pressure at point 5
+printf("pressure p5=%f psia\n",p5);
+T5=(p5*v5*144)/(R); //Unit:R //1ft^2=144 in^2 temperature at point 5
+printf("temperature T5=%f R\n\n",T5);
+n=(((T4-T3)-(T5-T2))/(T4-T3))*100; //The efficiency of the cycle
+printf("The efficiency of the cycle is %f percentage",n);