summaryrefslogtreecommitdiff
path: root/2417/CH6/EX6.40
diff options
context:
space:
mode:
Diffstat (limited to '2417/CH6/EX6.40')
-rwxr-xr-x2417/CH6/EX6.40/Ex6_40.sce59
1 files changed, 59 insertions, 0 deletions
diff --git a/2417/CH6/EX6.40/Ex6_40.sce b/2417/CH6/EX6.40/Ex6_40.sce
new file mode 100755
index 000000000..d16672d41
--- /dev/null
+++ b/2417/CH6/EX6.40/Ex6_40.sce
@@ -0,0 +1,59 @@
+clear;
+clc;
+printf("\t\t\tProblem Number 6.40\n\n\n");
+// Chapter 6: The Ideal Gas
+// Problem 6.40 (page no. 299)
+// Solution
+
+// * or "star" subscripts to conditions in which M=1;
+// "0" subscript refers to isentropic stagnation
+//This problem will be solved by two methods(A and B)
+printf("Method A\n"); //By equations:
+k=1.4; //the specific heat ratio //k=cp/cv
+R=53.3; //gas constant //ft*lbf/lbm*R
+M=2.5; //mach number=the local velocity/velocity of sound
+printf("Solution for (a)\n");
+// T/Tstar = (k+1)/(2*(1+((1/2)*(k-1)*M^2)))
+// Tstar/T0=2/(k+1)
+//Therefore,
+// (Tstar/T0)*(T/Tstar) = (T/T0)=1/(1+((1/2)*(k-1)*M^2))
+T0=560; //absolute temperature or stagnation temperature //unit:R
+T=T0/(1+((1/2)*(k-1)*M^2)); //temperature at M=2.5
+printf("The temperature is %f R\n\n",T);
+printf("Solution for (b)\n");
+p=0.5; //static pressure //unit:psia
+// p0/p = (T0/T)^(k/(k-1))
+p0=p*14.7*((T0/T)^(k/(k-1))); //pressure at M=2.5 //unit:psia
+printf("The pressure is %f psia\n\n",p0);
+printf("Solution for (c)\n");
+gc=32.17; //Unit:(LBm*ft)/(LBf*s^2) //gc is constant of proportionality
+Va=sqrt(gc*k*R*T); //ft/s //local velocity of sound
+V=M*Va; //valocity at M=2.5 //unit:ft/s
+printf("The velocity is %f ft/s\n\n",V);
+printf("Solution for (d)\n");
+v=(R*T)/(p*14.7*144); //ft^3/lbm //1 ft^2=144 in^2 //specific volume at M=2.5
+printf("The specific volume is %f ft^3/lbm\n\n",v);
+printf("Solution for (e)\n");
+//Mass velocity is definrd as the mass flow per unit area
+// m/A=(A*V)/(v*A)=V/v
+printf("The mass velocity is %f lbm/(s*ft^2)\n\n\n",V/v); //mass velocity at M=2.5
+
+
+printf("Method B\n"); //By the gas tables: //table 6.5 gives
+M=2.5; //mach number=the local velocity/velocity of sound
+printf("Solution for (a)\n");
+T0=560; //absolute temperature or stagnation temperature
+//T/T0=0.44444
+T=T0*0.44444; //temperature at M=2.5
+printf("The temperature is %f R\n\n",T)
+printf("Solution for (b)\n");
+p=0.5; //static pressure
+//p/p0=0.05853
+p0=(p*14.7)/0.05853; //pressure at M=2.5
+printf("The pressure is %f psia\n\n",p0);
+printf("Solution for (c)\n");
+printf("As before %f ft/s\n\n",V)
+printf("Solution for (d)\n");
+printf("As before %f ft^3/lbm\n\n",v)
+printf("Solution for (e)\n");
+printf("As before %f lbm/(s*ft^1)\n",V/v)