summaryrefslogtreecommitdiff
path: root/2417/CH6/EX6.39/Ex6_39.sce
diff options
context:
space:
mode:
Diffstat (limited to '2417/CH6/EX6.39/Ex6_39.sce')
-rwxr-xr-x2417/CH6/EX6.39/Ex6_39.sce46
1 files changed, 46 insertions, 0 deletions
diff --git a/2417/CH6/EX6.39/Ex6_39.sce b/2417/CH6/EX6.39/Ex6_39.sce
new file mode 100755
index 000000000..bd3081df7
--- /dev/null
+++ b/2417/CH6/EX6.39/Ex6_39.sce
@@ -0,0 +1,46 @@
+clear;
+clc;
+printf("\t\t\tProblem Number 6.39\n\n\n");
+// Chapter 6: The Ideal Gas
+// Problem 6.39 (page no. 297)
+// Solution
+
+k=1.4; //the specific heats ratio //k=cp/cv
+M=1; //(table 6.5) //The Mach number=the local velocity/velocity of sound
+T0=800; //absolute temperature //unit:R
+gc=32.17; //Unit:(LBm*ft)/(LBf*s^2) //gc is constant of proportionality
+R=53.35; //gas constant //ft*lbf/lbm*R
+p0=300; //psia //pressure
+
+// * or "star" subscripts to conditions in which M=1;
+// "0" subscript refers to isentropic stagnation
+//Refer to figure 6.26,
+//Tstar/T0=0.8333
+Tstar=T0*0.8333; //temperature when M=1 //unit:R
+printf("If the mach number at the outlet is unity,temperature is %f R\n",Tstar);
+Vat=sqrt(gc*R*Tstar*k); //ft/s //Vat=V2 //local velocity of sound
+printf("If the mach number at the outlet is unity,velocity is %f ft/s\n\n",Vat)
+
+//For A/Astar=2.035
+//The table yields
+M1=0.3; //mach number at inlet
+printf("At inlet,The mach number is %f\n",M1)
+//pstar/p0=0.52828
+pstar=p0*0.52828; //pressure when M=1 //psia
+//also,
+//T1/T0=0.98232 and p1/p0=0.93947
+//Therefore,
+T1=T0*0.982332; //unit:R //T1=temperature at inlet
+printf("At inlet,The temperature is %f R\n",T1);
+p1=p0*0.93947; //psia //p1=pressure at inlet
+printf("At inlet,The pressure is %f psia\n",p1);
+//From the inlet conditions derived,
+Va1=sqrt(gc*k*R*T1); //ft/s //V1=velocity at inlet
+V1=M1*Va1; //ft/s //velocity
+printf("At inlet,The velocity is %f ft/s\n",V1);
+//The specific volume at inlet is found from the equation of state for an ideal gas:
+v=(R*T1)/(p1*144); //ft^3/lbm //1 ft^2=144 in^2(for conversion of unit) //specific volume
+rho=inv(v); //inverse of specific volume //density
+A=2.035; //area //ft^2
+m=rho*A*V1; //mass flow //unit:lbm/s
+printf("At inlet,The mass flow is %f lbm/s\n",m);