diff options
Diffstat (limited to '2342/CH3')
-rwxr-xr-x | 2342/CH3/EX3.1/EX3_1.sce | 12 | ||||
-rwxr-xr-x | 2342/CH3/EX3.10/EX3_10.sce | 16 | ||||
-rwxr-xr-x | 2342/CH3/EX3.11/EX3_11.sce | 12 | ||||
-rwxr-xr-x | 2342/CH3/EX3.12/EX3_12.sce | 10 | ||||
-rwxr-xr-x | 2342/CH3/EX3.13/EX3_13.sce | 10 | ||||
-rwxr-xr-x | 2342/CH3/EX3.14/EX3_14.sce | 10 | ||||
-rwxr-xr-x | 2342/CH3/EX3.15/EX3_15.sce | 37 | ||||
-rwxr-xr-x | 2342/CH3/EX3.16/EX3_16.sce | 14 | ||||
-rwxr-xr-x | 2342/CH3/EX3.17/EX3_17.sce | 15 | ||||
-rwxr-xr-x | 2342/CH3/EX3.18/EX3_18.sce | 19 | ||||
-rwxr-xr-x | 2342/CH3/EX3.19/EX3_19.sce | 10 | ||||
-rwxr-xr-x | 2342/CH3/EX3.20/EX3_20.sce | 10 | ||||
-rwxr-xr-x | 2342/CH3/EX3.21/EX3_21.sce | 20 | ||||
-rwxr-xr-x | 2342/CH3/EX3.22/EX3_22.sce | 14 | ||||
-rwxr-xr-x | 2342/CH3/EX3.23/EX3_23.sce | 22 | ||||
-rwxr-xr-x | 2342/CH3/EX3.24/EX3_24.sce | 26 | ||||
-rwxr-xr-x | 2342/CH3/EX3.3/EX3_3.sce | 13 | ||||
-rwxr-xr-x | 2342/CH3/EX3.4/EX3_4.sce | 16 | ||||
-rwxr-xr-x | 2342/CH3/EX3.5/EX3_5.sce | 21 | ||||
-rwxr-xr-x | 2342/CH3/EX3.6/EX3_6.sce | 16 | ||||
-rwxr-xr-x | 2342/CH3/EX3.7/EX3_7.sce | 18 | ||||
-rwxr-xr-x | 2342/CH3/EX3.8/EX3_8.sce | 18 | ||||
-rwxr-xr-x | 2342/CH3/EX3.9/EX3_9.sce | 12 |
23 files changed, 371 insertions, 0 deletions
diff --git a/2342/CH3/EX3.1/EX3_1.sce b/2342/CH3/EX3.1/EX3_1.sce new file mode 100755 index 000000000..c56e9b82d --- /dev/null +++ b/2342/CH3/EX3.1/EX3_1.sce @@ -0,0 +1,12 @@ +// Exa 3.1
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+N_d = 10^17;// atoms/cm^3
+n_i = 1.5 * 10^10;// in /cm^3
+n_o = 10^17;// in cm^3
+// p_o * n_o = (n_i)^2
+p_o = (n_i)^2 / n_o;//in holes/cm^3
+disp(p_o,"The hole concentration at equilibrium in holes/cm^3 is");
diff --git a/2342/CH3/EX3.10/EX3_10.sce b/2342/CH3/EX3.10/EX3_10.sce new file mode 100755 index 000000000..d2257f38e --- /dev/null +++ b/2342/CH3/EX3.10/EX3_10.sce @@ -0,0 +1,16 @@ +// Exa 3.10
+format('v',8)
+clc;
+clear;
+close;
+// Given data
+Rho = 9.6 * 10^-2;// in ohm-m
+Sigma_n = 1/Rho;// in (ohm-m)^-1
+q = 1.6 * 10^-19;// in C
+Mu_n = 1300 * 10^-4;// in m^2/V-sec
+N_D = Sigma_n / (Mu_n * q);// in atoms/m^3
+A_D = 5*10^22;// Atom density in atoms/cm^3
+A_D = A_D * 10^6;// atoms/m^3
+R_si = N_D/A_D;// ratio
+disp(R_si,"The ratio of donor atom to silicon atom is");
+
diff --git a/2342/CH3/EX3.11/EX3_11.sce b/2342/CH3/EX3.11/EX3_11.sce new file mode 100755 index 000000000..bc24b8472 --- /dev/null +++ b/2342/CH3/EX3.11/EX3_11.sce @@ -0,0 +1,12 @@ +// Exa 3.11
+format('v',9)
+clc;
+clear;
+close;
+// Given data
+n_i = 1.5 * 10^10;// in per cm^3
+n_n = 2.25 * 10^15;// in per cm^3
+p_n = (n_i)^2/n_n;// in per cm^3
+disp(p_n,"The equilibrium electron per cm^3 is");
+h_n = n_n;// in cm^3
+disp(h_n,"Hole densities in per cm^3 is");
diff --git a/2342/CH3/EX3.12/EX3_12.sce b/2342/CH3/EX3.12/EX3_12.sce new file mode 100755 index 000000000..2713bc8a8 --- /dev/null +++ b/2342/CH3/EX3.12/EX3_12.sce @@ -0,0 +1,10 @@ +// Exa 3.12
+format('v',7)
+clc;
+clear;
+close;
+// Given data
+N_A = 2 * 10^16;// in atoms/cm^3
+N_D = 10^16;// in atoms/cm^3
+C_c = N_A-N_D;// C_c stands for Carrier concentration in /cm^3
+disp(C_c,"Carrier concentration per cm^3 is");
diff --git a/2342/CH3/EX3.13/EX3_13.sce b/2342/CH3/EX3.13/EX3_13.sce new file mode 100755 index 000000000..52b34f120 --- /dev/null +++ b/2342/CH3/EX3.13/EX3_13.sce @@ -0,0 +1,10 @@ +// Exa 3.13
+format('v',7)
+clc;
+clear;
+close;
+// Given data
+del_n = 10^15;// in cm^3
+Torque_p = 10 * 10^-6;// in sec
+R_g = del_n/Torque_p;// in hole pairs/sec/cm^3
+disp(R_g,"The rate of generation of minority carrier in electron hole pairs/sec/cm^3 is ");
diff --git a/2342/CH3/EX3.14/EX3_14.sce b/2342/CH3/EX3.14/EX3_14.sce new file mode 100755 index 000000000..299692444 --- /dev/null +++ b/2342/CH3/EX3.14/EX3_14.sce @@ -0,0 +1,10 @@ +// Exa 3.14
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+v = 1/(20 * 10^-6);// in cm/sec
+E = 10;// in V/cm
+Mu= v/E;// in cm^2/V-sec
+disp(Mu,"The mobility of minority charge carrier in cm^2/V-sec is ");
diff --git a/2342/CH3/EX3.15/EX3_15.sce b/2342/CH3/EX3.15/EX3_15.sce new file mode 100755 index 000000000..c72bd8d06 --- /dev/null +++ b/2342/CH3/EX3.15/EX3_15.sce @@ -0,0 +1,37 @@ +// Exa 3.15
+format('v',8)
+clc;
+clear;
+close;
+// Given data
+q = 1.6 * 10^-19;// in C
+N_D = 4.5 * 10^15;// in /cm^3
+del_p = 10^21;
+e=10;// in cm
+A = 1;// in mm^2
+A = A * 10^-14;// cm^2
+l = 10;// in cm
+Torque_p = 1;// in microsec
+Torque_p = Torque_p * 10^-6;// in sec
+Torque_n = 1;// in microsec
+Torque_n = Torque_n * 10^-6;// in sec
+n_i = 1.5 * 10^10;// in /cm^3
+D_n = 30;// in cm^2/sec
+D_p = 12;// in cm^2/sec
+n_o = N_D;// in /cm^3
+p_o = (n_i)^2/n_o;// in /cm^3
+disp(p_o,"Hole concentration at thermal equilibrium per cm^3 is");
+l_n = sqrt(D_n * Torque_n);// in cm
+disp(l_n,"Diffusion length of electron in cm is");
+l_p = sqrt(D_p * Torque_p);// in cm
+disp(l_p,"Diffusion length of holes in cm is");
+x=34.6*10^-4;// in cm
+dpBYdx = del_p *e;// in cm^4
+disp(dpBYdx,"Concentration gradient of holes at distance in cm^4 is");
+e1 = 1.88 * 10^1;// in cm
+dnBYdx = del_p * e1;// in cm^4
+disp(dnBYdx,"Concentration gradient of electrons in per cm^4 is");
+J_P = -(q) * D_p * dpBYdx;// in A/cm^2
+disp(J_P,"Current density of holes due to diffusion in A/cm^2 is");
+J_n = q * D_n * dnBYdx;// in A/cm^2
+disp(J_n,"Current density of electrons due to diffusion in A/cm^2 is");
diff --git a/2342/CH3/EX3.16/EX3_16.sce b/2342/CH3/EX3.16/EX3_16.sce new file mode 100755 index 000000000..18a3c6b30 --- /dev/null +++ b/2342/CH3/EX3.16/EX3_16.sce @@ -0,0 +1,14 @@ +// Exa 3.16
+format('v',5)
+clc;
+clear;
+close;
+// Given data
+e= 1.6*10^-19;// electron charge in C
+h = 6.626 * 10^-34;// in J-s
+h= h/e;// in eV
+c = 3 * 10^8;// in m/s
+lembda = 5490 * 10^-10;// in m
+f = c/lembda;
+E = h * f;// in eV
+disp(E,"The energy band gap of the semiconductor material in eV is");
diff --git a/2342/CH3/EX3.17/EX3_17.sce b/2342/CH3/EX3.17/EX3_17.sce new file mode 100755 index 000000000..bc8b4acc1 --- /dev/null +++ b/2342/CH3/EX3.17/EX3_17.sce @@ -0,0 +1,15 @@ +// Exa 3.17
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+y2 = 6 * 10^16;// in /cm^3
+y1 = 10^17;// in /cm^3
+x2 = 2;// in µm
+x1 = 0;// in µm
+D_n = 35;// in cm^2/sec
+q = 1.6 *10^-19;// in C
+dnBYdx = (y2 - y1)/((x2-x1) * 10^-4);
+J_n = q * D_n * dnBYdx;// in A/cm^2
+disp(J_n,"The current density in silicon in A/cm^2 is");
diff --git a/2342/CH3/EX3.18/EX3_18.sce b/2342/CH3/EX3.18/EX3_18.sce new file mode 100755 index 000000000..e7cc3bcc5 --- /dev/null +++ b/2342/CH3/EX3.18/EX3_18.sce @@ -0,0 +1,19 @@ +// Exa 3.18
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+q = 1.6 * 10^-19;// in C
+n_n = 5 * 10^20;// in /m^3
+n_n = n_n * 10^-6;// in cm^3
+Mu_n = 0.13;// in m^2/V-sec
+Mu_n = Mu_n * 10^4;// in cm^2/V-sec
+Sigma_n = q * n_n * Mu_n;// in (ohm-cm)^-1
+Rho = 1/Sigma_n;// in Ω-cm
+l = 0.1;// in cm
+A = 100;// µm^2
+A = A * 10^-8;// in cm^2
+R = Rho * (l/A);// in Ohm
+R=round(R*10^-6);// in MΩ
+disp(R,"The resistance of the bar in MΩ is");
diff --git a/2342/CH3/EX3.19/EX3_19.sce b/2342/CH3/EX3.19/EX3_19.sce new file mode 100755 index 000000000..33d62440f --- /dev/null +++ b/2342/CH3/EX3.19/EX3_19.sce @@ -0,0 +1,10 @@ +// Exa 3.19
+format('v',5)
+clc;
+clear;
+close;
+// Given data
+t_d = 3;// total depletion in µm
+// The depletion width ,
+D = t_d/9;// in µm
+disp(D,"Depletion width in µm is");
diff --git a/2342/CH3/EX3.20/EX3_20.sce b/2342/CH3/EX3.20/EX3_20.sce new file mode 100755 index 000000000..29c8153a3 --- /dev/null +++ b/2342/CH3/EX3.20/EX3_20.sce @@ -0,0 +1,10 @@ +// Exa 3.20
+format('v',8)
+clc;
+clear;
+close;
+// Given data
+n_i = 1.5 * 10^16;// in /m^3
+n_n = 5 * 10^20;// in /m^3
+p_n = (n_i)^2/n_n;// in /m^3
+disp(p_n,"The majority carrier density per m^3 is");
diff --git a/2342/CH3/EX3.21/EX3_21.sce b/2342/CH3/EX3.21/EX3_21.sce new file mode 100755 index 000000000..475ed820c --- /dev/null +++ b/2342/CH3/EX3.21/EX3_21.sce @@ -0,0 +1,20 @@ +// Exa 3.21
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+D_n = 25;// in cm^2/sec
+q = 1.6 * 10^-19;// in C
+y2 = 10^14;// in /cm^3
+y1 = 0;// in /cm^3
+x2 = 0;//in µm
+x1 = 0.5;// in µm
+x1 = x1 * 10^-4;// in cm
+dnBYdx = abs((y2-y1)/(x2-x1));// in /cm^4
+// The collector current density
+J_n = q * D_n * (dnBYdx);// in /cm^4
+J_n = J_n * 10^-1;// in A/cm^2
+disp(J_n,"The collector current density in A/cm^2 is");
+
+// Note: In the book, the calculated value of dn by dx (2*10^19) is wrong. Correct value is 2*10^18 so the answer in the book is wrong.
diff --git a/2342/CH3/EX3.22/EX3_22.sce b/2342/CH3/EX3.22/EX3_22.sce new file mode 100755 index 000000000..b1809ec64 --- /dev/null +++ b/2342/CH3/EX3.22/EX3_22.sce @@ -0,0 +1,14 @@ +//Exa 3.22
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+h = 6.64 * 10^-34;// in J-s
+e= 1.6*10^-19;// electron charge in C
+c= 3 * 10^8;// in m/s
+lembda = 0.87;// in µm
+lembda = lembda * 10^-6;// in m
+E_g = (h * c)/lembda;// in J-s
+E_g= E_g/e;// in eV
+disp(E_g,"The band gap of the material in eV is");
diff --git a/2342/CH3/EX3.23/EX3_23.sce b/2342/CH3/EX3.23/EX3_23.sce new file mode 100755 index 000000000..7785a193d --- /dev/null +++ b/2342/CH3/EX3.23/EX3_23.sce @@ -0,0 +1,22 @@ +// Exa 3.23
+format('v',8)
+clc;
+clear;
+close;
+// Given data
+I_o = 10;// in mW
+e = 1.6 * 10^-19;// in J/eV
+hv = 2;// in eV
+hv1=1.43;// in eV
+alpha = 5 * 10^4;// in cm^-1
+l = 46;// in µm
+l = l * 10^-6;// in m
+I_t = round(I_o * exp(-(alpha) * l));// in mW
+AbsorbedPower= I_o-I_t;// in mW
+AbsorbedPower=AbsorbedPower*10^-3;// in W or J/s
+disp(AbsorbedPower,"The absorbed power in watt or J/s is");
+F= (hv-hv1)/hv;// fraction of each photon energy unit
+EnergyConToHeat= AbsorbedPower*F;// in J/s
+disp(EnergyConToHeat,"The amount of energy converted to heat per second in J/s is : ")
+A= (AbsorbedPower-EnergyConToHeat)/(e*hv1);
+disp(A,"The number of photon per sec given off from recombination events in photons/s is");
diff --git a/2342/CH3/EX3.24/EX3_24.sce b/2342/CH3/EX3.24/EX3_24.sce new file mode 100755 index 000000000..3ad0c96dd --- /dev/null +++ b/2342/CH3/EX3.24/EX3_24.sce @@ -0,0 +1,26 @@ +// Exa 3.24
+format('v',9)
+clc;
+clear;
+close;
+// Given data
+Mu_p = 500;// in cm^2/V-sec
+kT = 0.0259;
+Toh_p = 10^-10;// in sec
+p_o = 10^17;// in cm^-3
+q= 1.6*10^-19;// in C
+A=0.5;// in square meter
+del_p = 5 * 10^16;// in cm^-3
+n_i= 1.5*10^10;// in cm^-3
+D_p = kT * Mu_p;// in cm/s
+L_p = sqrt(D_p * Toh_p);// in cm
+x = 10^-5;// in cm
+p = p_o+del_p* %e^(x/L_p);// in cm^-3
+// p= n_i*%e^(Eip)/kT where Eip=E_i-F_p
+Eip= log(p/n_i)*kT;// in eV
+Ecp= 1.1/2-Eip;// value of E_c-E_p in eV
+Ip= q*A*D_p/L_p*del_p/%e^(x/L_p);// in A
+disp(Ip,"The hole current in A is : ")
+Qp= q*A*del_p*L_p;// in C
+disp(Qp,"The value of Qp in C is : ")
+
diff --git a/2342/CH3/EX3.3/EX3_3.sce b/2342/CH3/EX3.3/EX3_3.sce new file mode 100755 index 000000000..6551bb8d7 --- /dev/null +++ b/2342/CH3/EX3.3/EX3_3.sce @@ -0,0 +1,13 @@ +// Exa 3.3
+format('v',6)
+clc;
+clear;
+close;
+// Given data
+n_i = 1.5 * 10 ^10;// in /cm^3 for silicon
+N_d = 10^17;// in atoms/cm^3
+n_o = 10^17;// electrons/cm^3
+KT = 0.0259;
+// E_r - E_i = KT * log(n_o/n_i)
+del_E = KT * log(n_o/n_i);// in eV
+disp("The energy band for this type material is Ei + "+string(del_E)+" eV");
diff --git a/2342/CH3/EX3.4/EX3_4.sce b/2342/CH3/EX3.4/EX3_4.sce new file mode 100755 index 000000000..0bef1da2b --- /dev/null +++ b/2342/CH3/EX3.4/EX3_4.sce @@ -0,0 +1,16 @@ +// Exa 3.4
+format('v',7)
+clc;
+clear;
+close;
+// Given data
+K = 1.38 * 10^-23;// in J/K
+T = 27;// in degree
+T = T + 273;// in K
+e = 1.6 * 10^-19;// in C
+Mu_e = 0.17;// in m^2/v-s
+Mu_e1 = 0.025;// in m^2/v-s
+D_n = ((K * T)/e) * Mu_e;// in m^2/s
+disp(D_n,"The diffusion coefficient of electrons in m^2/s is");
+D_p = ((K * T)/e) * Mu_e1;// in m^2/s
+disp(D_p,"The diffusion coefficient of holes in m^2/s is ");
diff --git a/2342/CH3/EX3.5/EX3_5.sce b/2342/CH3/EX3.5/EX3_5.sce new file mode 100755 index 000000000..b6b3e0e87 --- /dev/null +++ b/2342/CH3/EX3.5/EX3_5.sce @@ -0,0 +1,21 @@ +// Exa 3.5
+format('v',8)
+clc;
+clear;
+close;
+// Given data
+Mu_n = 0.15;// in m^2/v-s
+K = 1.38 * 10^-23; // in J/K
+T = 300;// in K
+del_n = 10^20;// in per m^3
+Toh_n = 10^-7;// in s
+e = 1.6 * 10^-19;// in C
+D_n = Mu_n * ((K * T)/e);// in m^2/s
+disp(D_n,"The diffusion coefficient in m^2/s is");
+L_n = sqrt(D_n * Toh_n);// in m
+disp(L_n,"The Diffusion length in m is");
+J_n = (e * D_n * del_n)/L_n;// in A/m^2
+disp(J_n,"The diffusion current density in A/m^2 is");
+// Note : The value of diffusion coefficient in the book is wrong.
+
+
diff --git a/2342/CH3/EX3.6/EX3_6.sce b/2342/CH3/EX3.6/EX3_6.sce new file mode 100755 index 000000000..0ee11a5e9 --- /dev/null +++ b/2342/CH3/EX3.6/EX3_6.sce @@ -0,0 +1,16 @@ +// Exa 3.6
+format('v',8)
+clc;
+clear;
+close;
+// Given data
+Sigma = 0.1;// in (ohm-m)^-1
+Mu_n = 1300;
+n_i = 1.5 * 10^10;
+q = 1.6 * 10^-19;// in C
+n_n = Sigma/(Mu_n * q);// in electrons/cm^3
+n_n= n_n*10^6;// per m^3
+disp(n_n,"The concentration of electrons per m^3 is");
+p_n = (n_i)^2/n_n;// in per cm^3
+p_n = p_n * 10^6;// in per m^3
+disp(p_n,"The concentration of holes per m^3 is");
diff --git a/2342/CH3/EX3.7/EX3_7.sce b/2342/CH3/EX3.7/EX3_7.sce new file mode 100755 index 000000000..6aadfff8f --- /dev/null +++ b/2342/CH3/EX3.7/EX3_7.sce @@ -0,0 +1,18 @@ +// Exa 3.7
+format('v',9)
+clc;
+clear;
+close;
+// Given data
+Mu_e = 0.13;// in m^2/v-s
+Mu_h = 0.05;// in m^2/v-s
+Toh_h = 10^-6;// in s
+L = 100;// in µm
+L = L * 10^-6;// in m
+V = 2;// in V
+t_n =L^2/(Mu_e * V);// in s
+disp(t_n,"Electron transit time in seconds is");
+p_g = (Toh_h/t_n) * (1 + Mu_h/Mu_e);//photo conductor gain
+disp(p_g,"Photo conductor gain is");
+
+// Note: There is a calculation error to evaluate the value of t_n. So the answer in the book is wrong
diff --git a/2342/CH3/EX3.8/EX3_8.sce b/2342/CH3/EX3.8/EX3_8.sce new file mode 100755 index 000000000..8e9816c1d --- /dev/null +++ b/2342/CH3/EX3.8/EX3_8.sce @@ -0,0 +1,18 @@ +// Exa 3.8
+format('v',5)
+clc;
+clear;
+close;
+//Given data
+n_i = 2.5 * 10^13;
+Mu_n = 3800;
+Mu_p = 1800;
+q = 1.6 * 10^-19;// in C
+Sigma = n_i * (Mu_n + Mu_p) * q;// in (ohm-cm)^-1
+Rho = 1/Sigma;// in ohm-cm
+Rho= round(Rho);
+disp(Rho,"The resistivity of intrinsic germanium in ohm-cm is");
+N_D = 4.4 * 10^22/(1*10^8);// in atoms/cm^3
+Sigma_n = N_D * Mu_n * q;// in (ohm-cm)^-1
+Rho_n = 1/Sigma_n;// in ohm-cm
+disp(Rho_n,"If a donor type impurity is added to the extent of 1 atom per 10^8 Ge atoms, then the resistivity drops in ohm-cm is");
diff --git a/2342/CH3/EX3.9/EX3_9.sce b/2342/CH3/EX3.9/EX3_9.sce new file mode 100755 index 000000000..140c4a388 --- /dev/null +++ b/2342/CH3/EX3.9/EX3_9.sce @@ -0,0 +1,12 @@ +// Exa 3.9
+format('v',8)
+clc;
+clear;
+close;
+// Given data
+n_i = 10^16;// in /m3
+N_D = 10^22;// in /m^3
+n = N_D;// in /m^3
+disp(n,"Electron concentration per m^3 is");
+p = (n_i)^2/n;// in /m^3
+disp(p,"Hole concentration per m^3 is");
|