diff options
Diffstat (limited to '23/CH7/EX7.7/Example_7_7.sce')
-rwxr-xr-x | 23/CH7/EX7.7/Example_7_7.sce | 139 |
1 files changed, 139 insertions, 0 deletions
diff --git a/23/CH7/EX7.7/Example_7_7.sce b/23/CH7/EX7.7/Example_7_7.sce new file mode 100755 index 000000000..31c069208 --- /dev/null +++ b/23/CH7/EX7.7/Example_7_7.sce @@ -0,0 +1,139 @@ +clear;
+clc;
+
+//To find Approx Value
+function[A]=approx(V,n)
+ A=round(V*10^n)/10^n;//V-Value n-To what place
+ funcprot(0)
+endfunction
+
+function[Q]=MCPS(T0,T,A,B,C,D)
+ t=T/T0;
+ Q=(A)+(((B*T0)+(((C*T0*T0)+(D/(t*t*T0*T0)))*(t+1)/2))*((t-1)/log(t)))
+ funcprot(0);
+endfunction
+
+function[Q]=MCPH(T0,T,A,B,C,D)
+ t=T/T0;
+ Q=(A+((B/2)*T0*(t+1))+((C/3)*T0*T0*((t^2)+t+1))+(D/(t*T0*T0)))
+ funcprot(0);
+endfunction
+
+function[H]=HRB(Tr,Pr,omega)
+ B0=0.083-(0.422/(Tr^1.6));
+ diffr_B0=0.675/(Tr^2.6);//dB0/dTr
+ B1=0.139-(0.172/(Tr^4.2));
+ diffr_B1=0.722/(Tr^5.2);//dB0/dTr
+ H=Pr*(B0-(Tr*diffr_B0)+(omega*(B1-(Tr*diffr_B1))));
+ funcprot(0);
+endfunction
+
+function[Q]=SRB(Tr,Pr,omega)
+ B0=0.083-(0.422/(Tr^1.6));
+ diffr_B0=0.675/(Tr^2.6);//dB0/dTr
+ B1=0.139-(0.172/(Tr^4.2));
+ diffr_B1=0.722/(Tr^5.2);//dB0/dTr
+ Q=-Pr*(diffr_B0+(omega*diffr_B1));
+ funcprot(0);
+endfunction
+
+//Example 7.7
+//Caption : Program to Find the isentropic Work Produced
+
+//Given Values
+
+T1=573.15;//[K]
+P1=45;//[bar]
+P2=2;//[bar]
+Tc=282.3;//[K]
+Pc=50.4;//[bar]
+omega=0.087;
+A=1.424;
+B=14.394*10^-3;
+C=-4.392*10^-6;
+D=0;
+R=8.314;
+
+//Using Eqn(6.84)
+//del_H=<Cp>h (T2-T1)+Hr2-Hr1
+//Using Eqn(6.85))
+//del_S=<Cp>s ln(T2/T1) - R*ln(P2/P1)+Sr2-Sr1
+
+//(a) equations for Ideal gas
+//No residuals terms, whence
+
+//del_H=<Cp>h(T2-T1)
+//del_S=<Cp>s ln(T2/T1) - R*ln(P2/P1)
+
+del_S=0//isentropic
+//Whence K = <Cp>s/R ln(T2/T1) = ln(P2/P1)
+K=log(P2/P1);
+//let c = <Cp>s/R
+//T2=exp(K/c+ln(T1))
+i=-1;
+a=round(T1);//Initial
+while (i==-1)
+ b=MCPS(T1,a,A,B,C,D);
+ temp=exp((K/b)+log(T1));
+ flag=a-temp;
+ if(flag<=0.1) then
+ T2=a;
+ i=1;
+ else
+ a=temp-0.1;
+ i=-1;
+ end
+end
+disp('(a)by Equations for an Ideal gas')
+disp('K',approx(T2,1),'Temp = ')
+Cp_h=R*MCPH(T1,T2,A,B,C,D);
+del_Hs=Cp_h*(T2-T1);
+Ws_a=approx(del_Hs,0);
+disp('J/mol',Ws_a,'Work')
+
+//(b)-Appropriate Generalized correlations
+
+Tr1=T1/Tc;
+Pr1=P1/Pc;
+
+Hr1=R*Tc*HRB(Tr1,Pr1,omega);//[J/mol]
+Sr1=R*SRB(Tr1,Pr1,omega);//[J/mol/K]
+
+Tr2=T2/Tc;
+Pr2=P2/Pc;
+
+Sr2=R*SRB(Tr2,Pr2,omega);
+
+//Using Eqn(6.85))
+//del_S=<Cp>s ln(T2/T1) - R*ln(P2/P1)+Sr2-Sr1
+//del_S=0 isentropic
+//K=<Cp>s ln(T2/T1)=Rln(P2/P1)-Sr2+Sr1
+K=R*log(P2/P1)-Sr2+Sr1;
+//T2=exp((K/<Cp>s)+ln T1)
+i=-1;
+a=round(T1);//Initial
+while (i==-1)
+ b=R*MCPS(T1,a,A,B,C,D);
+ temp=exp((K/b)+log(T1));
+ flag=a-temp;
+ if(flag<=0.1) then
+ T2=a;
+ i=1;
+ else
+ a=temp-0.1;
+ i=-1;
+ end
+end
+
+disp('(b)by Appropriate generalized correlations')
+disp('K',approx(T2,1),'Temp = ')
+Tr2=T2/Tc;
+
+Sr2=R*SRB(Tr2,Pr2,omega);//[J/mol/K]
+Hr2=R*Tc*HRB(Tr2,Pr2,omega);//[J/mol]
+Cp_h=R*MCPH(T1,T2,A,B,C,D);
+del_Hs=Cp_h*(T2-T1)+Hr2-Hr1;
+Ws_b=approx(del_Hs,-1);
+disp('J/mol',Ws_b,'Work')
+
+//End
\ No newline at end of file |