diff options
Diffstat (limited to '2223/CH9/EX9.3/Ex9_3.sce')
-rwxr-xr-x | 2223/CH9/EX9.3/Ex9_3.sce | 83 |
1 files changed, 83 insertions, 0 deletions
diff --git a/2223/CH9/EX9.3/Ex9_3.sce b/2223/CH9/EX9.3/Ex9_3.sce new file mode 100755 index 000000000..1bab42fcf --- /dev/null +++ b/2223/CH9/EX9.3/Ex9_3.sce @@ -0,0 +1,83 @@ +// scilab Code Exa 9.3 Calculation on an axial turbine stage
+
+dh=0.450; // hub diameter in m
+dt=0.750; // tip diameter in m
+d=0.5*(dt+dh); // mean diameter of the impeller blade in m
+r=d/2;
+R_m=0.5; // degree of reaction for mean section
+T1=500; // Initial Temperature in degree C
+t1=T1+273; // in Kelvin
+p1=100; // Initial Pressure in bar
+N=6e3; // rotor Speed in RPM
+m=100; // in kg/s
+alpha2m=75; // air angle at nozzle exit
+beta_2m=0; // air angle at rotor entry
+beta_3m=75; // air angle at rotor exit
+// assuming radial equillibrium and free vortex flow in the stage, axial velocity is constant throughout
+u_m=%pi*d*N/60;
+uh=%pi*dh*N/60;
+ut=%pi*dt*N/60;
+// for mean section
+c_xm=u_m*cotd(alpha2m);
+c_2m=(1/sind(alpha2m))*u_m;
+c_t2m=u_m;
+
+disp("for mean section")
+// part(c) blade-to-gas speed ratio
+sigma_m=u_m/c_2m;
+disp(sigma_m,"(c)blade-to-gas speed ratio is")
+// part(d) specific work
+w_m=u_m*c_t2m;
+disp("kJ/kg",w_m*1e-3,"(d)specific work is")
+// part(e) the loading coefficient
+shi_m=w_m/(u_m^2);
+disp(shi_m,"(e)the loading coefficient is")
+
+// for hub section
+rh=dh/2;
+n=(sind(alpha2m)^2);
+c_x2h=c_xm*((r/rh)^n);
+c_t2h=c_t2m*((r/rh)^n);
+c_2h=c_2m*((r/rh)^n);
+disp("for hub section")
+disp("(a) the relative air angles are")
+beta2h=atand((c_t2h-uh)/c_x2h);
+disp("degree",beta2h,"air angle at rotor entry is beta2h= ")
+beta3h=atand(uh/c_x2h);
+disp("degree",beta3h,"air angle at rotor exit is beta3h= ")
+// part(b) degree of reaction
+Rh=c_x2h*(tand(beta3h)-tand(beta2h))*100/(2*uh);
+disp("%",Rh,"(b)degree of reaction is")
+// part(c) blade-to-gas speed ratio
+sigmah=uh/c_2h;
+disp(sigmah,"(c)blade-to-gas speed ratio is")
+// part(d) specific work
+wh=uh*c_t2h;
+disp("kJ/kg",wh*1e-3,"(d)specific work is")
+// part(e) the loading coefficient
+shi_h=wh/(uh^2);
+disp(shi_h,"(e)the loading coefficient is")
+
+// for tip section
+rt=dt/2;
+c_x2t=c_xm*((r/rt)^n);
+c_t2t=c_t2m*((r/rt)^n);
+c_2t=c_2m*((r/rt)^n);
+disp("for tip section")
+disp("(a) the relative air angles are")
+beta2t=atand((c_t2t-ut)/c_x2t);
+disp("degree",beta2t,"air angle at rotor entry is beta2t= ")
+beta3t=atand(ut/c_x2t);
+disp("degree",beta3t,"air angle at rotor exit is beta3t= ")
+// part(b) degree of reaction
+Rt=c_x2t*(tand(beta3t)-tand(beta2t))*100/(2*ut);
+disp("%",Rt,"(b)degree of reaction is")
+// part(c) blade-to-gas speed ratio
+sigmat=ut/c_2t;
+disp(sigmat,"(c)blade-to-gas speed ratio is")
+// part(d) specific work
+wt=ut*c_t2t;
+disp("kJ/kg",wt*1e-3,"(d)specific work is")
+// part(e) the loading coefficient
+shi_t=wt/(ut^2);
+disp(shi_t,"(e)the loading coefficient is")
|