diff options
Diffstat (limited to '2223/CH9/EX9.1/Ex9_1.sce')
-rwxr-xr-x | 2223/CH9/EX9.1/Ex9_1.sce | 108 |
1 files changed, 108 insertions, 0 deletions
diff --git a/2223/CH9/EX9.1/Ex9_1.sce b/2223/CH9/EX9.1/Ex9_1.sce new file mode 100755 index 000000000..09b250600 --- /dev/null +++ b/2223/CH9/EX9.1/Ex9_1.sce @@ -0,0 +1,108 @@ +// scilab Code Exa 9.1 Calculation on multi stage turbine
+
+d=1; // mean diameter of the impeller blade in m
+T1=500; // Initial Temperature in degree C
+t1=T1+273; // in Kelvin
+p1=100; // Initial Pressure in bar
+N=3e3; // Speed in RPM
+m=100; // in kg/s
+alpha2=70; // exit angle of the first stage nozzle blades
+
+// part(a) single stage impulse
+nsti=0.78;
+u=%pi*d*N/60;
+sigma=0.5*(sind(alpha2)); // maximum utilization factor
+c2=u/sigma;
+cx=c2*(cosd(alpha2));
+beta2=atand(0.5*(tand(alpha2))); // beta2=beta3
+wst=2*(u^2)*1e-3;
+P=m*wst;
+disp("(a)for single stage impulse")
+disp("degree",beta2,"blade angles are beta2=beta3= ")
+disp("MW",P*1e-3,"Power developed is")
+
+sv=0.04; // specific volume of steam after expansion in m3/kg
+h=(m*sv)/(cx*%pi*d); // h2=h3=h
+disp("cm",h*1e2,"blade height is")
+delhs=wst/nsti;
+disp("final state of the steam is")
+p=81.5; // from enthalpy-entropy diagram
+T=470;
+disp("bar",p,"p=")
+disp("degree C",T,"T=")
+
+// part(b) Two-stage Curtis wheel
+nstc=0.65;
+u=%pi*d*N/60;
+sigma2=0.25*(sind(alpha2));
+c2_2=u/sigma2;
+cx2=c2_2*(cosd(alpha2));
+beta2_2=atand((3*u)/cx2); // beta2=beta3
+alpha3=atand((2*u)/(c2_2*cosd(alpha2))); // alpha2'=alpha3
+beta2_s=atand((u)/cx2); // beta2'=beta3'
+wI=6*(u^2)*1e-3;
+wII=2*(u^2)*1e-3;
+wst2=wI+wII;
+P2=m*wst2;
+disp("(b)for Two-stage Curtis wheel")
+disp("degree",alpha3,"air angles are alpha2s=alpha3= ")
+disp("degree",beta2_2,"for first stage blade angles are beta2=beta3= ")
+disp("degree",beta2_s,"for second stage blade angles are beta2s=beta3s= ")
+
+disp("MW",P2*1e-3,"Power developed is")
+
+delhs2=wst2/nstc;
+// from enthalpy-entropy diagram for the expansion
+disp("final state of the steam is")
+p2=27;
+T2=365;
+v2=0.105; // specific volume of steam after expansion in m3/kg
+disp("bar",p2,"p=")
+disp("degree C",T2,"T=")
+disp("m3/kg",v2,"v=")
+h2=(m*v2)/(cx2*%pi*d);
+disp("cm",h2*1e2,"blade height is")
+
+// part(c) Two-stage Reateau wheel
+nst1=0.78;
+wI3=2*(u^2)*1e-3;
+wII3=2*(u^2)*1e-3;
+wst3=wI3+wII3;
+P3=m*wst3;
+disp("(c)for Two-stage Reateau wheel")
+disp("degree",beta2,"blade angles are beta2=beta3= ")
+disp("MW",P3*1e-3,"Power developed is")
+delhs3=wst3/nst1;
+disp("final state of the steam is")
+p3=65; // from enthalpy-entropy diagram
+T3=445;
+v3=0.05; // specific volume of steam after expansion in m3/kg
+disp("bar",p3,"p=")
+disp("degree C",T3,"T=")
+disp("m3/kg",v3,"v=")
+h3=(m*v3)/(cx*%pi*d);
+disp("cm",h3*1e2,"blade height for the second stage is")
+
+// part(d) single stage 50% reaction
+nstr=0.85;
+sigma4=sind(alpha2); // maximum utilization factor
+c2_4=u/sigma4; // c2_4=w_3
+cx4=c2_4*(cosd(alpha2)); // alpha2=beta3;
+beta2_4=0; // beta2=alpha3
+wst4=(u^2)*1e-3;
+P4=m*wst4;
+disp("(d)for single stage 50% reaction")
+disp("degree",beta2_4,"blade angles are beta2=alpha3= ")
+disp("degree",alpha2,"and beta3=alpha2= ")
+disp("MW",P4*1e-3,"Power developed is")
+delhs4=wst4/nstr;
+// from enthalpy-entropy diagram
+disp("final state of the steam is")
+p4=90;
+T4=485;
+v4=0.035;
+disp("bar",p4,"p=")
+disp("degree C",T4,"T=")
+disp("m3/kg",v4,"v=")
+h4=(m*v4)/(cx4*%pi*d);
+disp("cm",h4*1e2,"the rotor blade height at exit is")
|