diff options
Diffstat (limited to '2223/CH6')
-rwxr-xr-x | 2223/CH6/EX6.1/Ex6_1.sav | bin | 0 -> 27592 bytes | |||
-rwxr-xr-x | 2223/CH6/EX6.1/Ex6_1.sce | 18 | ||||
-rwxr-xr-x | 2223/CH6/EX6.2/Ex6_2.sav | bin | 0 -> 30048 bytes | |||
-rwxr-xr-x | 2223/CH6/EX6.2/Ex6_2.sce | 23 | ||||
-rwxr-xr-x | 2223/CH6/EX6.3/Ex6_3.sav | bin | 0 -> 30944 bytes | |||
-rwxr-xr-x | 2223/CH6/EX6.3/Ex6_3.sce | 10 |
6 files changed, 51 insertions, 0 deletions
diff --git a/2223/CH6/EX6.1/Ex6_1.sav b/2223/CH6/EX6.1/Ex6_1.sav Binary files differnew file mode 100755 index 000000000..d115ee716 --- /dev/null +++ b/2223/CH6/EX6.1/Ex6_1.sav diff --git a/2223/CH6/EX6.1/Ex6_1.sce b/2223/CH6/EX6.1/Ex6_1.sce new file mode 100755 index 000000000..e326be5df --- /dev/null +++ b/2223/CH6/EX6.1/Ex6_1.sce @@ -0,0 +1,18 @@ +// scilab Code Exa 6.1 inward flow radial turbine 32000rpm
+P=150; // Power Output in kW
+N=32e3; // Speed in RPM
+d1=20/100; // outer diameter of the impeller in m
+d2=8/100; // inner diameter of the impeller in m
+V1=387; // Absolute Velocity of gas at entry in m/s
+V2=193; // Absolute Velocity of gas at exit in m/s
+
+// part(a) determining mass flow rate
+u1=%pi*d1*N/60;
+u2=d2*u1/d1;
+w_at=u1^2/10e2;
+m=P/w_at;
+disp ("kg/s" ,m,"(a)mass flow rate is")
+
+// part (b) determining the percentage energy transfer due to the change of radius
+n=((u1^2-u2^2)/2e3)/w_at;
+disp ("%",n*100,"(b)percentage energy transfer due to the change of radius is")
diff --git a/2223/CH6/EX6.2/Ex6_2.sav b/2223/CH6/EX6.2/Ex6_2.sav Binary files differnew file mode 100755 index 000000000..7fed43626 --- /dev/null +++ b/2223/CH6/EX6.2/Ex6_2.sav diff --git a/2223/CH6/EX6.2/Ex6_2.sce b/2223/CH6/EX6.2/Ex6_2.sce new file mode 100755 index 000000000..fabe4c998 --- /dev/null +++ b/2223/CH6/EX6.2/Ex6_2.sce @@ -0,0 +1,23 @@ +// scilab Code Exa 6.2 radially tipped Centrifugal blower 3000rpm
+P=150; // Power Output in kW
+N=3e3; // Speed in RPM
+d2=40/100; // outer diameter of the impeller in m
+d1=25/100; // inner diameter of the impeller in m
+b=8/100; // impeller width at entry in m
+n_st=0.7; // stage efficiency
+V1=22.67; // Absolute Velocity at entry in m/s
+ro=1.25; // density of air in kg/m3
+
+// part(a) determining the pressure developed
+u2=%pi*d2*N/60;
+u1=d1*u2/d2;
+w_ac=u2^2;
+delh_s=n_st*w_ac;
+delp=ro*delh_s;
+disp ("mm W.G." ,delp/9.81,"(a)the pressure developed is")
+
+// part (b) determining the power required
+A1=%pi*d1*b;
+m=ro*V1*A1;
+P=m*w_ac/10e2;
+disp("kW",P,"(b)Power required is")
diff --git a/2223/CH6/EX6.3/Ex6_3.sav b/2223/CH6/EX6.3/Ex6_3.sav Binary files differnew file mode 100755 index 000000000..bbefe1ff4 --- /dev/null +++ b/2223/CH6/EX6.3/Ex6_3.sav diff --git a/2223/CH6/EX6.3/Ex6_3.sce b/2223/CH6/EX6.3/Ex6_3.sce new file mode 100755 index 000000000..fa6083404 --- /dev/null +++ b/2223/CH6/EX6.3/Ex6_3.sce @@ -0,0 +1,10 @@ +// scilab Code Exa 6.3 Calculation on an axial flow fan
+N=1.47e3; // Speed in RPM
+d=30/100; // Mean diameter of the impeller in m
+ro=1.25; // density of air in kg/m3
+
+// part(b) determining the pressure rise across the fan
+u=%pi*d*N/60;
+w_c=u^2/3;
+delp=ro*w_c;
+disp ("mm W.G." ,delp/9.81,"(b)the pressure rise across the fan is")
|