diff options
Diffstat (limited to '2223/CH18/EX18.31')
-rwxr-xr-x | 2223/CH18/EX18.31/Ex18_31.sav | bin | 0 -> 45792 bytes | |||
-rwxr-xr-x | 2223/CH18/EX18.31/Ex18_31.sce | 57 |
2 files changed, 57 insertions, 0 deletions
diff --git a/2223/CH18/EX18.31/Ex18_31.sav b/2223/CH18/EX18.31/Ex18_31.sav Binary files differnew file mode 100755 index 000000000..8f5140403 --- /dev/null +++ b/2223/CH18/EX18.31/Ex18_31.sav diff --git a/2223/CH18/EX18.31/Ex18_31.sce b/2223/CH18/EX18.31/Ex18_31.sce new file mode 100755 index 000000000..17d3b3c6c --- /dev/null +++ b/2223/CH18/EX18.31/Ex18_31.sce @@ -0,0 +1,57 @@ +// scilab Code Exa 18.31 Cantilever Type IFR turbine
+
+P=150; // Power developed in kW
+T01=960; // the gas entry temperature at nozzle in Kelvin
+p01=3; // the gas entry pressure at nozzle in bar
+beta2=45; // air angle at rotor blade entry (from radial direction)
+beta3=65; // air angle at rotor blade exit (from radial direction)
+d2=0.2; // rotor blade ring diameter at entry in m
+d3=0.15; // rotor blade ring diameter at exit in m
+gamma=1.4;
+N=36e3; // rotor Speed in RPM
+alpha_2=15; // air angle at nozzle exit(from tangential direction)
+pr0=2.29; // total-to-static Pressure Ratio(p01/p3)
+n_N=0.94; // Nozzle Efficiency
+cp=1100; // Specific Heat at Constant Pressure in J/(kgK)
+R=cp*((gamma-1)/gamma);
+u2=%pi*d2*N/60;
+u3=%pi*d3*N/60;
+
+// part(a) mass flow rate of the gas
+cr2_theta2=tand(alpha_2); // cr2_theta2=cr2/c_theta2
+c_theta2=u2/(1-cr2_theta2); // c_theta2=cr2*tan(alpha2)+u2
+cr2=c_theta2*cr2_theta2;
+cr3=cr2;
+c_theta3=(cr3*tand(beta3))-u3;
+w_st=(u2*c_theta2)+(u3*c_theta3);
+m=P/(w_st*1e-3);
+disp("kg/s",m,"(a)mass flow rate of the gas is")
+
+// part(b)rotor blade axial length at entry
+c2=cr2/sind(alpha_2);
+T2s=T01-((0.5*(c2^2))/(cp*n_N));
+T2=T01-((T01-T2s)*n_N);
+p_rn=(T2s/T01)^(gamma/(gamma-1));
+p2=p01*p_rn;
+rho2=(p2*1e5)/(R*T2);
+b2=m/(rho2*cr2*%pi*d2);
+disp("cm",b2*1e2,"(b)rotor blade axial length at entry is")
+
+// part(c)total-to-total turbine efficiency
+T03ss=T01*(pr0^((1-gamma)/gamma));
+n_T=P/(m*cp*1e-3*(T01-T03ss));
+disp("%",n_T*1e2,"(c)total-to-total turbine efficiency is")
+
+//part(d)rotor blade length at exit
+p03=p01/pr0;
+T03=T01-(P/(m*cp*1e-3));
+c3=sqrt((cr3^2)+(c_theta3^2));
+T3=T03-((cr3^2)/(2*cp));
+p3=p03*((T3/T03)^(gamma/(gamma-1)));
+ro3=(p3*1e5)/(R*T3);
+b3=m/(ro3*cr3*%pi*d3);
+disp("cm",b3*1e2,"(d)rotor blade length at exit is")
+
+// part(e) degree of reaction
+DOR=(T2-T3)/(T01-T03);
+disp("%",DOR*1e2,"(e)degree of reaction is")
|