diff options
Diffstat (limited to '2223/CH11/EX11.5')
-rwxr-xr-x | 2223/CH11/EX11.5/Ex11_5.sav | bin | 0 -> 62600 bytes | |||
-rwxr-xr-x | 2223/CH11/EX11.5/Ex11_5.sce | 75 |
2 files changed, 75 insertions, 0 deletions
diff --git a/2223/CH11/EX11.5/Ex11_5.sav b/2223/CH11/EX11.5/Ex11_5.sav Binary files differnew file mode 100755 index 000000000..122fe9357 --- /dev/null +++ b/2223/CH11/EX11.5/Ex11_5.sav diff --git a/2223/CH11/EX11.5/Ex11_5.sce b/2223/CH11/EX11.5/Ex11_5.sce new file mode 100755 index 000000000..19b8ab9e8 --- /dev/null +++ b/2223/CH11/EX11.5/Ex11_5.sce @@ -0,0 +1,75 @@ +// scilab Code Exa 11.5 Forced Vortex axial compressor stage
+
+dm=50/100; // Mean Blade ring diameter in m
+rm=dm/2;
+dh=0.3098354; // from results of exa 11.2
+dt=0.6901646;
+um=100; // peripheral speed in m/s
+beta_1m=51;
+beta_2m=9;
+alpha_1m=7; // air angle at rotor and stator exit
+alpha_2m=50.177922;
+omega=um/rm;
+rh=dh/2;
+rt=dt/2;
+uh=omega*rh;
+ut=omega*rt;
+// part(a) rotor blade air angles
+cx=73.654965;
+c_theta1m=cx*tand(alpha_1m);
+C1=c_theta1m/rm;
+c_theta1h=C1*rh;
+c_theta1t=C1*rt;
+K1=cx^2+(2*(C1^2)*(rm^2));
+cx1h=sqrt(K1-(2*(C1^2)*(rh^2)));
+cx1t=sqrt(K1-(2*(C1^2)*(rt^2)));
+c_theta2m=cx*tand(alpha_2m);
+C2=c_theta2m/rm;
+c_theta2h=C2*rh;
+c_theta2t=C2*rt;
+K2=cx^2-(2*(C2-C1)*omega*(rm^2))+(2*(C2^2)*(rm^2));
+cx2h=sqrt(K2+(2*(C2-C1)*omega*(rh^2))-(2*(C2^2)*(rh^2)));
+cx2t=sqrt(K2+(2*(C2-C1)*omega*(rt^2))-(2*(C2^2)*(rt^2)));
+disp("(a) the rotor blade air angles are")
+// for hub section
+alpha1h=atand(C1*rh/cx1h);
+alpha2h=atand(C2*rh/cx2h);
+disp("for hub section")
+beta1h=atand((uh/cx1h)-tand(alpha1h));
+beta2h=atand((uh/cx2h)-tand(alpha2h));
+disp("degree",beta1h,"beta1h=")
+disp("degree",beta2h,"beta2h=")
+
+// for tip section
+alpha1t=atand(C1*rt/cx1t);
+alpha2t=atand(C2*rt/cx2t);
+disp("for tip section")
+beta1t=atand((ut/cx1t)-tand(alpha1t));
+beta2t=atand((ut/cx2t)-tand(alpha2t));
+disp("degree",beta1t,"beta1t= ")
+disp("degree",beta2t,"beta2t= ")
+
+// part(b) specific work
+wh=omega*(C2-C1)*(rh^2);
+wm=omega*(C2-C1)*(rm^2);
+wt=omega*(C2-C1)*(rt^2);
+disp("kJ/kg",wh*1e-3,"(b)specific work at hub is")
+disp("kJ/kg",wm*1e-3,"specific work at mean section is")
+disp("kJ/kg",wt*1e-3,"specific work at tip is")
+// part(c) the loading coefficients
+disp("(c)the loading coefficients are")
+shi_h=wh/(uh^2);
+disp(shi_h,"shi_h=")
+shi_m=wm/(um^2);
+disp(shi_m,"shi_m=")
+shi_t=wt/(ut^2);
+disp(shi_t,"shi_t=")
+
+// part(c) degrees of reaction
+disp("(d)Degrees of reaction are")
+Rh=((cx1h^2)*(secd(beta1h)^2)-(cx2h^2)*(secd(beta2h)^2))*100/(2*wh);
+Rm=((cx^2)*(secd(beta_1m)^2)-(cx^2)*(secd(beta_2m)^2))*100/(2*wm);
+Rt=((cx1t^2)*(secd(beta1t)^2)-(cx2t^2)*(secd(beta2t)^2))*100/(2*wt);
+disp("%",Rh,"Rh=")
+disp("%",Rm,"Rm=")
+disp("%",Rt,"Rt=")
|